Ensemble-Based Exigent Analysis. Part I: Estimating Worst-Case Weather-Related Forecast Damage Scenarios

Daniel Gombos Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Daniel Gombos in
Current site
Google Scholar
PubMed
Close
and
Ross N. Hoffman Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Ross N. Hoffman in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Exigent analysis supplements an ensemble forecast of weather-related damage with a map of the worst-case scenario (WCS), a multivariate confidence bound of the damage. For multivariate Gaussian ensembles, ensemble-based exigent analysis uses a Lagrange multiplier technique to identify the unique maximizing damage map at a given uncertainty level based on the ensemble-estimated covariance of the damage. Exigent analysis is applied to two case studies. First, using ensemble forecasts of 2-m temperature and estimates of the number of inhabitants at each location, exigent analysis is applied to forecast the worst-case heating demand for a large portion of the United States on 8–9 January 2010. The WCS at the 90th percentile results in only 1.26% more heating demand than the ensemble mean. Second, using ensemble forecasts of 2-m temperature and estimates of the number of citrus trees at each location, exigent analysis is applied to forecast the worst-case freeze damage to Florida citrus trees on 11 January 2010. For this case study, the WCS at the 90th percentile damages about 14.2 million trees, about 4.3 times more than the ensemble mean.

Corresponding author address: Dr. Ross N. Hoffman, Atmospheric and Environmental Research, 131 Hartwell Ave., Lexington, MA 02421. E-mail: ross.n.hoffman@aer.com

Abstract

Exigent analysis supplements an ensemble forecast of weather-related damage with a map of the worst-case scenario (WCS), a multivariate confidence bound of the damage. For multivariate Gaussian ensembles, ensemble-based exigent analysis uses a Lagrange multiplier technique to identify the unique maximizing damage map at a given uncertainty level based on the ensemble-estimated covariance of the damage. Exigent analysis is applied to two case studies. First, using ensemble forecasts of 2-m temperature and estimates of the number of inhabitants at each location, exigent analysis is applied to forecast the worst-case heating demand for a large portion of the United States on 8–9 January 2010. The WCS at the 90th percentile results in only 1.26% more heating demand than the ensemble mean. Second, using ensemble forecasts of 2-m temperature and estimates of the number of citrus trees at each location, exigent analysis is applied to forecast the worst-case freeze damage to Florida citrus trees on 11 January 2010. For this case study, the WCS at the 90th percentile damages about 14.2 million trees, about 4.3 times more than the ensemble mean.

Corresponding author address: Dr. Ross N. Hoffman, Atmospheric and Environmental Research, 131 Hartwell Ave., Lexington, MA 02421. E-mail: ross.n.hoffman@aer.com
Save
  • Ancell, B., and Hakim G. , 2007: Comparing adjoint- and ensemble-sensitivity analysis with application to observation targeting. Mon. Wea. Rev., 135, 41174134.

    • Search Google Scholar
    • Export Citation
  • Berrocal, V. J., Raftery A. E. , Gneiting T. , and Steed R. C. , 2010: Probabilistic weather forecasting for winter road maintenance. J. Amer. Stat. Assoc., 105, 522537.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2010: The THORPEX Interactive Grand Global Ensemble. Bull. Amer. Meteor. Soc., 91, 10591072.

  • Bronson, C. H., 2010: Florida citrus statistics 2008-2009. National Agriculture Statistics Survey, Florida Field Office, 112 pp. [Available online at www.nass.usda.gov/Statistics_by_State/Florida/Publications/Citrus/fcs/2008-09/fcs0809.pdf.]

  • Buizza, R., Houtekamer P. L. , Toth Z. , Pellerin G. , Wei M. , and Zhu Y. , 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 10761097.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., van Leeuwen P. , and Evensen G. , 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724.

  • Coles, S. G., and Tawn J. A. , 1991: Modelling extreme multivariate events. J. Roy. Stat. Soc., 53, 377392.

  • Cooley, D., Nychka D. , and Naveau P. , 2007: Bayesian spatial modeling of extreme precipitation return levels. J. Amer. Stat. Assoc., 102, 824840.

    • Search Google Scholar
    • Export Citation
  • Costa, J. A., and Hero A. O. , 2004: Geodesic entropic graphs for dimension and entropy estimation in manifold learning. IEEE Trans. Signal Process., 52, 22102221.

    • Search Google Scholar
    • Export Citation
  • Department of Agriculture, 2010: Citrus freeze damage report and maturity test results, February 19, 2010. National Agriculture Statistics Survey, Florida Field Office, 2 pp. [Available online at www.nass.usda.gov/Statistics_by_State/Florida/Publications/Citrus/cit/2009-10/frz0210.pdf.]

  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and Cohn S. E. , 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757.

    • Search Google Scholar
    • Export Citation
  • Gilmour, I., Smith L. A. , and Buizza R. , 2001: Linear regime duration: Is 24 hours a long time in synoptic weather forecasting? J. Atmos. Sci., 58, 35253539.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., Raftery A. E. , Westveld A. H. III, and Goldman T. , 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118.

    • Search Google Scholar
    • Export Citation
  • Gombos, D., 2009: Ensemble regression: Using ensemble model output for atmospheric dynamics and prediction. Ph.D. thesis, Massachusetts Institute of Technology, 190 pp.

  • Gombos, D., and Hansen J. , 2008: Potential vorticity regression and its relationship to dynamical piecewise inversion. Mon. Wea. Rev., 136, 26682682.

    • Search Google Scholar
    • Export Citation
  • Gombos, D., and Hoffman R. N. , 2013: Ensemble-based exigent analysis. Part II: Using ensemble regression to estimate conditions antecedent to worst-case forecast damage scenarios. Wea. Forecasting, 28, 557569.

    • Search Google Scholar
    • Export Citation
  • Gombos, D., Hansen J. A. , Du J. , and McQueen J. , 2007: Theory and applications of the minimum spanning tree rank histogram. Mon. Wea. Rev., 135, 14901505.

    • Search Google Scholar
    • Export Citation
  • Gombos, D., Hoffman R. N. , and Hansen J. A. , 2012: Ensemble statistics for diagnosing dynamics: Tropical cyclone track forecast sensitivities revealed by ensemble regression. Mon. Wea. Rev., 140, 26572669.

    • Search Google Scholar
    • Export Citation
  • Grassberger, P., and Procaccia I. , 1983: Measuring the strangeness of strange attractors. Physica D, 9, 189208.

  • Hakim, G., and Torn R. D. , 2008: Ensemble synoptic analysis. Synoptic–Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, L. Bosart and H. Bluestein, Eds., Amer. Meteor. Soc., 440 pp.

  • Hamill, T. M., and Colucci S. J. , 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125, 13121327.

  • Hamill, T. M., and Colucci S. J. , 1998: Evaluation of Eta–RSM ensemble probabilistic precipitation forecasts. Mon. Wea. Rev., 126, 711724.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Snyder C. , 2002: Using improved background error covariances from an ensemble Kalman filter for adaptive observations. Mon. Wea. Rev., 130, 15521572.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Whitaker J. S. , 2007: Ensemble calibration of 500-hPa geopotential height and 850-hPa and 2-m temperatures using reforecasts. Mon. Wea. Rev., 135, 32733280.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., Whitaker J. S. , and Snyder C. , 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790.

    • Search Google Scholar
    • Export Citation
  • Henderson, J. M., Hoffman R. N. , Leidner S. M. , Nehrkorn T. , and Grassotti C. , 2005: A 4D-Var study of the potential of weather control and exigent weather forecasting. Quart. J. Roy. Meteor. Soc., 131, 30373052.

    • Search Google Scholar
    • Export Citation
  • Hirschberg, P. A., and Coauthors, 2011: A weather and climate enterprise strategic implementation plan for generating and communicating forecast uncertainty information. Bull. Amer. Meteor. Soc., 92, 16511666.

    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., and Gombos D. , 2012: Hurricane Irene (2011) “worst-case” estimates of wind damage to property from exigent analysis of ECMWF ensemble forecasts. Geophys. Res. Lett., 39, L16802, doi:10.1029/2012GL052646.

    • Search Google Scholar
    • Export Citation
  • Jewson, S., Brix A. , and Ziehmann C. , 2005: Weather Derivative Valuation: The Meteorological, Statistical, Financial and Mathematical Foundations. Cambridge University Press, 373 pp.

  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. University Press, 341 pp.

  • Katz, R. W., and Murphy A. H. , 1997: Forecast value: Prototype decision-making models. Economic Value of Weather and Climate Forecasts, R. W. Katz and A. H. Murphy, Eds., Cambridge University Press, 183–217.

  • Levina, E., and Bickel P. J. , 2004: Maximum likelihood estimation of intrinsic dimension. Adv. Neural Inf. Process. Syst., 17. [Available online at http://books.nips.cc/papers/files/nips17/NIPS2004_0094.pdf.]

    • Search Google Scholar
    • Export Citation
  • Maaten, L., cited 2010: Matlab toolbox for dimensionality reduction. University of California, San Diego. [Available online at http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html.]

  • Mahalanobis, P. C., 1936: On the generalised distance in statistics. Proc.Natl. Inst. Sci. India, 2, 4955.

  • Mardia, K. V., 1970: Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519530.

  • Marrocu, M., and Chessa P. A. , 2008: A multi-model/multi-analysis limited area ensemble: Calibration issues. Meteor. Appl., 15, 171179.

    • Search Google Scholar
    • Export Citation
  • Mecklin, C. J., and Mundfrom D. J. , 2004: An appraisal and bibliography of tests for multivariate normality. Int. Stat. Rev., 72, 123138.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., Buizza R. , Palmer T. N. , and Petroliagis T. , 1996: The new ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119.

    • Search Google Scholar
    • Export Citation
  • Mureau, R., Molteni F. , and Palmer T. N. , 1993: Ensemble prediction using dynamically conditioned perturbations. Quart. J. Roy. Meteor. Soc., 119, 299323.

    • Search Google Scholar
    • Export Citation
  • Roulston, M. S., and Smith L. A. , 2003: Combining dynamical and statistical ensembles. Tellus, 55A, 1630.

  • Smith, L. A., and Hansen J. A. , 2004: Extending the limits of ensemble forecast verification with the minimum spanning tree. Mon. Wea. Rev., 132, 15221528.

    • Search Google Scholar
    • Export Citation
  • Snyder, R., and Melo-Abreu J. , 2005: Frost Protection: Fundamentals, Practice, and Economics. Vol. 1. Food and Agriculture Organization of the United Nations, 112 pp. [Available online at ftp://ftp.fao.org/docrep/fao/008/y7223e/y7223e00.pdf.]

  • U.S. Census Bureau, cited 2011: Preliminary annual estimates of the resident population for counties: April 1, 2000 to July 1, 2010 (CO-PEST2010-Total). U.S. Census Bureau. [Available online at http://www.census.gov/popest/eval-estimates/eval-est2010.html.]

  • Wilks, D. S., 2004: The minimum spanning tree histogram as a verification tool for multidimensional ensemble forecasts. Mon. Wea. Rev., 132, 13291340.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Elsevier, 672 pp.

  • Yelenosky, G., and Guy C. L. , 1989: Freezing tolerance of citrus spinach, and petunia leaf tissue: Osmotic adjustment and sensitivity to freeze induced cellular dehydration. Plant Physiol., 89, 444451.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 607 280 30
PDF Downloads 92 31 2