• Accadia, C., Mariani S. , Casaioli M. , Lavagnini A. , and Speranza A. , 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918932.

    • Search Google Scholar
    • Export Citation
  • Ahn, J. H., and Ezawa K. J. , 1997: Decision support for real-time telemarketing operations through Bayesian network learning. Decis. Support Syst., 21, 1727.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and Ardanuy P. E. , 1989: Estimating climatic-scale precipitation from space: A review. J. Climate, 2, 12291238.

  • Atlas, R., Hou A. Y. , and Reale O. , 2005: Application of SeaWinds scatterometer and TMI-SSM/I rain rates to hurricane analysis and forecasting. J. Photogramm. Remote Sens., 59, 233243.

    • Search Google Scholar
    • Export Citation
  • Balov, N., 2011: A Gaussian mixed model for learning discrete Bayesian networks. Stat. Probab. Lett., 81, 220230.

  • Biancamaria, S., Mognard N. M. , Boone A. , Grippa M. , and Josberger E. G. , 2008: A satellite snow depth multi-year average derived from SSM/I for the high latitude regions. Remote Sens. Environ., 112, 25572568.

    • Search Google Scholar
    • Export Citation
  • Bouckaert, R. R., Frank E. , Hall M. , Kirkby R. , Reutemann P. , Seewald A. , and Scuse D. , 2010: WEKA Manual. University of Waikato Press, 325 pp.

  • Chang, C. P., Yeh T. C. , and Chen J. M. , 1993: Effects of terrain on the surface structure of typhoons over Taiwan. Mon. Wea. Rev., 121, 734752.

    • Search Google Scholar
    • Export Citation
  • Chau, K. W., Wu C. L. , and Li Y. S. , 2005: Comparison of several flood forecasting models in Yangtze River. J. Hydrol. Eng., 10, 485491.

    • Search Google Scholar
    • Export Citation
  • Cheng, C. T., Wang W. C. , Xu D. M. , and Chau K. W. , 2008: Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resour. Manage., 22, 895909.

    • Search Google Scholar
    • Export Citation
  • Chiu, L. S., North G. R. , Short D. A. , and McConnell A. , 1990: Rain estimation from satellites: Effect of finite field of view. J. Geophys. Res., 95 (D3), 21772185.

    • Search Google Scholar
    • Export Citation
  • Chow, V. T., Maidment D. R. , and Mays L. W. , 1988: Applied Hydrology. McGraw-Hill, 572 pp.

  • Cooper, G., and Herskovits E. , 1992: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn., 9, 309347.

    • Search Google Scholar
    • Export Citation
  • de Santana, A. L., Frances C. R. , Rocha C. A. , Carvalho S. V. , Vijaykumar N. L. , Rego L. P. , and Costa J. C. , 2007: Strategies for improving the modeling and interpretability of Bayesian networks. Data Knowl. Eng., 63, 91107.

    • Search Google Scholar
    • Export Citation
  • Dietrich, S., Bechini R. , Adamo C. , Mugnai A. , and Prodi F. , 2000: Radar calibration of physical profile-based precipitation retrieval from passive microwave sensors. Phys. Chem. Earth, 25B, 877882.

    • Search Google Scholar
    • Export Citation
  • Duda, R., and Hart P. , 1973: Pattern Classification and Scene Analysis. John Wiley and Sons, 482 pp.

  • Ebert, E. E., Damrath U. , Wergen W. , and Baldwin M. E. , 2003: The WGNE assessment of short-term quantitative precipitation forecasts (QPFs) from operational numerical weather prediction models. Bull. Amer. Meteor. Soc., 84, 481492.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., Grody N. C. , and Marks G. F. , 1994: Effects of surface conditions on rain identification using the SSM/I. Remote Sens. Rev., 11, 195209.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., Weng F. , Grody N. C. , and Basist A. , 1996: An eight-year (1987–1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements. Bull. Amer. Meteor. Soc., 77, 891905.

    • Search Google Scholar
    • Export Citation
  • Friedman, N., Geiger D. , and Goldszmidt M. , 1997: Bayesian network classifiers. Mach. Learn., 29, 131163.

  • Gan, T. Y., Kalinga O. , and Singh P. , 2009: Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions. Remote Sens. Environ., 113, 919927.

    • Search Google Scholar
    • Export Citation
  • Grecu, M., Anagnostou E. N. , and Adler R. F. , 2000: Assessment of the use of lightning information in satellite infrared rainfall estimated. J. Hydrometeor., 1, 211221.

    • Search Google Scholar
    • Export Citation
  • Grody, N. C., 1991: Classification of snow cover and precipitation using the Special Sensor Microwave Imager. J. Geophys. Res., 96 (D4), 74237435.

    • Search Google Scholar
    • Export Citation
  • Guo, S., Xu G. , Zhang H. , and Li C. , 2007: A real-time flood updating model based on the Bayesian method. Methodol. Hydrol., 311, 210215.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167.

  • Hosmer, D. W., and Lemeshow S. , 2000: Applied Logistic Regression. John Wiley and Sons, 373 pp.

  • Hsu, N. S., and Wei C.-C. , 2007: A multipurpose reservoir real-time operation model for flood control during typhoon invasion. J. Hydrol., 336, 282293.

    • Search Google Scholar
    • Export Citation
  • Jiang, L., Cai Z. , Wang D. , and Zhang H. , 2012: Improving tree augmented naïve Bayes for class probability estimation. Knowl.-Based Syst., 26, 239245.

    • Search Google Scholar
    • Export Citation
  • Klepp, C., and Bakan S. , 2000: Satellite derived energy and water cycle components in North Atlantic cyclones. Phys. Chem. Earth, 25, 6568.

    • Search Google Scholar
    • Export Citation
  • Kurt, I., Ture M. , and Kurum A. T. , 2008: Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Syst. Appl., 34, 366374.

    • Search Google Scholar
    • Export Citation
  • Langley, P., Iba W. , and Thompson K. , 1992: An analysis of Bayesian classifiers. Proc. 10th National Conf. on Artificial Intelligence, San Jose, CA, Association for the Advancement of Artificial Intelligence, 223–228.

  • Lee, C. S., Huang L. R. , Shen H. S. , and Wang S. T. , 2006: A climatology model for forecasting typhoon rainfall in Taiwan. Nat. Hazards, 37, 87105.

    • Search Google Scholar
    • Export Citation
  • Liang, W., Zhuang D. , Jiang D. , Pan J. , and Ren H. , 2012: Assessment of debris flow hazards using a Bayesian network. Geomorphology, 171–172, 94100.

    • Search Google Scholar
    • Export Citation
  • Lin, J. Y., Cheng C. T. , and Chau K. W. , 2006: Using support vector machines for long-term discharge prediction. Hydrol. Sci. J., 51, 599612.

    • Search Google Scholar
    • Export Citation
  • Liu, G., and Curry J. A. , 1997: Precipitation characteristics in Greenland–Iceland–Norwegian Seas determined by using satellite microwave data. J. Geophys. Res., 102 (D12), 13 98713 997.

    • Search Google Scholar
    • Export Citation
  • Lonfat, M., Rogers R. , Marchok T. , and Marks F. D. Jr., 2007: A parametric model for predicting hurricane rainfall. Mon. Wea. Rev., 135, 30863097.

    • Search Google Scholar
    • Export Citation
  • Mackey, B. P., and Krishnamurti T. N. , 2001: Ensemble forecast of a typhoon flood event. Wea. Forecasting, 16, 399415.

  • Madden, M. G., 2009: On the classification performance of TAN and general Bayesian networks. Knowl.-Based Syst., 22, 489495.

  • Mishra, A., Gairola R. M. , Varma A. K. , Sarkar A. , and Agarwal V. K. , 2009: Rainfall retrieval over Indian land and oceanic regions from SSM/I microwave data. Adv. Space Res., 44, 815823.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. M., 2005: Machine Learning. McGraw-Hill, 414 pp.

  • Murphy, A. H., 1993: What is a good forecast? An essay on the nature of goodness in weather forecasting. Wea. Forecasting, 8, 281293.

    • Search Google Scholar
    • Export Citation
  • Muttil, N., and Chau K. W. , 2006: Neural network and genetic programming for modelling coastal algal blooms. Int. J. Environ. Pollut., 28, 223238.

    • Search Google Scholar
    • Export Citation
  • Nativi, S., Barrett E. C. , and Beaumont M. J. , 1997: Monitoring of rainfall integrating active and passive microwave sensors: Possibilities and problems. Phys. Chem. Earth, 22, 229233.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., Cifelli R. , and Rutledge S. A. , 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721.

    • Search Google Scholar
    • Export Citation
  • Niculescu, S. P., 2003: Artificial neural networks and genetic algorithms in QSAR. J. Mol. Struct. THEOCHEM, 622, 7183.

  • Pearl, J., 1988: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers, 552 pp.

  • Pernkopf, F., 2005: Bayesian network classifiers versus selective k-NN classifier. Pattern Recognit., 38, 110.

  • Pernkopf, F., and O'Leary P. , 2003: Floating search algorithm for structure learning of Bayesian network classifiers. Pattern Recognit. Lett., 24, 28392848.

    • Search Google Scholar
    • Export Citation
  • Petty, G. W., and Krajewski W. F. , 1996: Satellite estimation of precipitation over land. Hydrol. Sci. J., 41, 433451.

  • Raytheon Systems Company, 2000: Special Sensor Microwave/Imager (SSM/I) user's interpretation guide (UIG). NOAA Grant UG32268-900, 96 pp.

  • Spencer, R. W., Goodman H. M. , and Hood R. E. , 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273.

    • Search Google Scholar
    • Export Citation
  • Stajduhar, I., Dalbelo-Basic B. , and Bogunovic N. , 2009: Impact of censoring on learning Bayesian networks in survival modelling. Artif. Intell. Med., 47, 199217.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D. B., 2000: Use of the “odds ratio” for diagnosing forecast skill. Wea. Forecasting, 15, 221232.

  • Tsai, C. C., Lu M. C. , and Wei C. C. , 2012: Decision tree-based classifier combined with neural-based predictor for water-stage forecasts in a river basin during typhoons: A case study in Taiwan. Environ. Eng. Sci., 29, 108116.

    • Search Google Scholar
    • Export Citation
  • Tuleya, R. E., DeMaria M. , and Kuligowski R. J. , 2007: Evaluation of GFDL and simple statistical model rainfall forecasts for U.S. landfalling tropical storms. Wea. Forecasting, 22, 5670.

    • Search Google Scholar
    • Export Citation
  • Uusitalo, L., 2007: Advantages and challenges of Bayesian networks in environmental modeling. Ecol. Modell., 203, 312318.

  • Verron, S., Li J. , and Tiplica T. , 2010: Fault detection and isolation of faults in a multivariate process with Bayesian network. J. Process Control, 20, 902911.

    • Search Google Scholar
    • Export Citation
  • Wang, W. C., Cheng C. T. , Chau K. W. , and Xu D. M. , 2012: Calibration of Xinanjiang model parameters using hybrid genetic algorithm based fuzzy optimal model. J. Hydroinf., 14, 784799.

    • Search Google Scholar
    • Export Citation
  • Wei, C.-C., 2012a: RBF neural networks combined with principal component analysis applied to quantitative precipitation forecast for a reservoir watershed during typhoon periods. J. Hydrometeor., 13, 722734.

    • Search Google Scholar
    • Export Citation
  • Wei, C.-C., 2012b: Wavelet support vector machines for forecasting precipitation in tropical cyclones: Comparisons with GSVM, regressions, and numerical MM5 model. Wea. Forecasting, 27, 438450.

    • Search Google Scholar
    • Export Citation
  • Wei, C.-C., and Hsu N. S. , 2008: Derived operating rules for a reservoir operation system: Comparison of decision trees, neural decision trees and fuzzy decision trees. Water Resour. Res., 44, W02428, doi:10.1029/2006WR005792.

    • Search Google Scholar
    • Export Citation
  • Wei, C.-C., and Hsu N. S. , 2009: Optimal tree-based release rules for real-time flood control operations on a multipurpose multireservoir system. J. Hydrol., 365, 213224.

    • Search Google Scholar
    • Export Citation
  • Wei, C.-C., and Roan J. , 2012: Retrievals for the rainfall rate over land using Special Sensor Microwave/Imager data during tropical cyclones: Comparisons of scattering index, regression, and support vector regression. J. Hydrometeor., 13, 15671578.

    • Search Google Scholar
    • Export Citation
  • Wong, M. L., Lee S. Y. , and Leung K. S. , 2004: Data mining of Bayesian networks using cooperative coevolution. Decis. Support Syst., 38, 451472.

    • Search Google Scholar
    • Export Citation
  • Wu, C. L., Chau K. W. , and Li Y. S. , 2009: Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour. Res., 45, W08432, doi:10.1029/2007WR006737.

    • Search Google Scholar
    • Export Citation
  • Xiao, J., He C. , and Jiang X. , 2009: Structure identification of Bayesian classifiers based on GMDH. Knowl.-Based Syst., 22, 461470.

  • Yeh, T. C., 2002: Typhoon rainfall over Taiwan area: The empirical orthogonal function modes and their applications on the rainfall forecasting. Terr. Atmos. Oceanic Sci., 13, 449468.

    • Search Google Scholar
    • Export Citation
  • Zhu, W., 2003: Using Bayesian network on network tomography. Comput. Commun., 26, 155163.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 63 56 7
PDF Downloads 31 26 4

Improvement of Typhoon Precipitation Forecast Efficiency by Coupling SSM/I Microwave Data with Climatologic Characteristics and Precipitation

View More View Less
  • 1 Department of Digital Content Design and Management, Toko University, Pu-Tzu City, Taiwan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Prediction of flash floods in an accurate and timely fashion is one of the most important challenges in weather prediction. This study aims to address the rainfall prediction problem for quantitative precipitation forecasts over land during typhoons. To improve the efficiency of forecasting typhoon precipitation, this study develops Bayesian network (BN) and logistic regression (LR) models using three different datasets and examines their feasibility under different rain intensities. The study area is the watershed of the Tanshui River in Taiwan. The dataset includes a total of 70 typhoon events affecting the watershed from 1997 to 2008. For practicability, the three datasets used include climatologic characteristics of typhoons issued by the Central Weather Bureau (CWB), rainfall rates measured using automatic meteorological gauges in the watershed, and microwave data originated from Special Sensor Microwave Imager (SSM/I) radiometers. Five separate BN and LR models (cases), differentiated by a unique combination of input datasets, were tested, and their predicted rainfalls are compared in terms of skill scores including mean absolute error (MAE), RMSE, bias (BIA), equitable threat score (ETS), and precision (PRE). The results show that the case where all three input datasets are used is better than the other four cases. Moreover, LR can provide better predictions than BN, especially in flash rainfall situations. However, BN might be one of the most prominent approaches when considering the ease of knowledge interpretation. In contrast, LR describes associations, not causes, and does not explain the decision.

Corresponding author address: Chih-Chiang Wei, Dept. of Digital Content Design and Management, Toko University, No. 51, Sec. 2, University Rd., Pu-Tzu City, Chia-Yi County 61363, Taiwan. E-mail: d89521007@ntu.edu.tw

Abstract

Prediction of flash floods in an accurate and timely fashion is one of the most important challenges in weather prediction. This study aims to address the rainfall prediction problem for quantitative precipitation forecasts over land during typhoons. To improve the efficiency of forecasting typhoon precipitation, this study develops Bayesian network (BN) and logistic regression (LR) models using three different datasets and examines their feasibility under different rain intensities. The study area is the watershed of the Tanshui River in Taiwan. The dataset includes a total of 70 typhoon events affecting the watershed from 1997 to 2008. For practicability, the three datasets used include climatologic characteristics of typhoons issued by the Central Weather Bureau (CWB), rainfall rates measured using automatic meteorological gauges in the watershed, and microwave data originated from Special Sensor Microwave Imager (SSM/I) radiometers. Five separate BN and LR models (cases), differentiated by a unique combination of input datasets, were tested, and their predicted rainfalls are compared in terms of skill scores including mean absolute error (MAE), RMSE, bias (BIA), equitable threat score (ETS), and precision (PRE). The results show that the case where all three input datasets are used is better than the other four cases. Moreover, LR can provide better predictions than BN, especially in flash rainfall situations. However, BN might be one of the most prominent approaches when considering the ease of knowledge interpretation. In contrast, LR describes associations, not causes, and does not explain the decision.

Corresponding author address: Chih-Chiang Wei, Dept. of Digital Content Design and Management, Toko University, No. 51, Sec. 2, University Rd., Pu-Tzu City, Chia-Yi County 61363, Taiwan. E-mail: d89521007@ntu.edu.tw
Save