• Barker, D. M., Huang W. , Guo Y.-R. , and Xiao Q. N. , 2004: A three-dimensional (3DVAR) data assimilation system for use with MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914.

    • Search Google Scholar
    • Export Citation
  • Brewster, K., Hu M. , Xue M. , and Gao J. , 2005: Efficient assimilation of radar data at high resolution for short range numerical weather prediction. World Weather Research Program Symp. and Nowcasting and Very Short-Range Forecasting WSN05, Toulouse, France, WMO World Weather Research Programme, Symp. CD, Paper 3.06.

  • Brewster, K., Thomas K. , Gao J. , Brotzge J. , Xue M. , and Wang Y. , 2010: A nowcasting system using full physics numerical weather prediction initialized with CASA and NEXRAD radar data. Preprints, 25th Conf. Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 9.4. [Available online at https://ams.confex.com/ams/25SLS/techprogram/paper_176053.htm.]

  • Browning, K. A., and Wexler R. , 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., Hjelmfelt M. R. , and Smith P. L. , 2006: An observational examination of long-lived supercells. Part I: Characteristics, evolution, and demise. Wea. Forecasting, 21, 673688.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., Clabo D. R. , and Zeitler J. W. , 2009: Comments on ‘‘Structure and formation mechanism on the 24 May 2000 supercell-like storm developing in a moist environment over the Kanto Plain, Japan.” Mon. Wea. Rev., 137, 27032711.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., 1976: Single Doppler radar vortex recognition: Part I—Mesocyclone signatures. Preprints, 17th Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 97–103.

  • Burgess, D. W., and Lemon L. R. , 1991: Characteristics of mesocyclones detected during a NEXRAD test. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 39–42.

  • Burgess, D. W., and Doswell C. A. III, 1993: Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 161–172.

  • Burgess, D. W., Wood V. T. , and Brown R. A. , 1982: Mesocyclone evolution statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422–424.

  • Courtier, P., 1997: Dual formulation of four-dimensional variational assimilation. Quart. J. Roy. Meteor. Soc., 123, 24492461.

  • Courtier, P., Thépaut J.-N. , and Hollingsworth A. , 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671388.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1992: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Doviak, R. J., and Zrnić D. S. , 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Doviak, R. J., Ray P. S. , Strauch R. G. , and Miller L. J. , 1976: Error estimation in wind fields derived from dual-Doppler radar measurement. J. Appl. Meteor., 15, 868878.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and Coauthors, 2005: Service-oriented environments for dynamically interacting with mesoscale weather. Comput. Sci. Eng., 7, 1227.

    • Search Google Scholar
    • Export Citation
  • Gao, J., and Stensrud D. , 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 10541065.

    • Search Google Scholar
    • Export Citation
  • Gao, J., Xue M. , Shapiro A. , and Droegemeier K. K. , 1999: A variational method for the retrieval of three-dimensional wind fields from dual-Doppler radars. Mon. Wea. Rev., 127, 21282142.

    • Search Google Scholar
    • Export Citation
  • Gao, J., Xue M. , Brewster K. , Carr F. , and Droegemeier K. K. , 2002: New development of a 3DVAR system for a nonhydrostatic NWP model. Preprints, 15th Conf. on Numerical Weather Prediction/19th Conf. on Weather Analysis and Forecasting, San Antonio, TX, Amer. Meteor. Soc., 12.4. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47480.htm.]

  • Gao, J., Xue M. , Brewster K. , and Droegemeier K. K. , 2004: A three-dimensional variational data assimilation method with recursive filter for single-Doppler radar. J. Atmos. Oceanic Technol., 21, 457469.

    • Search Google Scholar
    • Export Citation
  • Gao, J., Stensrud D. J. , and Xue M. , 2009: Three-dimensional analyses of several thunderstorms observed during VORTEX2 field operations. Preprints, 34th Conf. on Radar Meteorology, Willimsburg, VA, Amer. Meteor. Soc., P9.8. [Available online at https://ams.confex.com/ams/34Radar/webprogram/Paper156114.html.]

  • Gao, J., Brewster K. , Xue M. , Brotzge J. , Thomas K. , and Wang Y. , 2010: Real-time, low-level wind analysis including CASA and WSR-88D radar data using the ARPS 3DVAR. Preprints, 25th Conf. Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 7B.4. [Available online at https://ams.confex.com/ams/pdfpapers/176005.pdf.]

  • Ge, G., Gao J. , Brewster K. A. , and Xue M. , 2010: Effects of beam broadening and earth curvature in radar data assimilation. J. Atmos. Oceanic Technol., 27, 617636.

    • Search Google Scholar
    • Export Citation
  • Ge, G., Gao J. , and Xue M. , 2012: Diagnostic pressure equation as a weak constraint in a storm-scale three-dimensional variational radar data assimilation system. J. Atmos. Oceanic Technol., 29, 10751092.

    • Search Google Scholar
    • Export Citation
  • Gropp, W., Lusk E. , and Skjellum A. , 1999: Using MPI: Portable Parallel Programming with the Message-Passing Interface. 2nd ed. The MIT Press, 371 pp.

  • Hu, M., Xue M. , and Brewster K. , 2006a: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698.

    • Search Google Scholar
    • Export Citation
  • Hu, M., Xue M. , Gao J. , and Brewster K. , 2006b: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699721.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., Black T. L. , Rogers E. , Chuang H. , and DiMego G. , 2003: The NCEP nonhydrostatic mesoscale forecasting model. Preprints, 10th Conf. on Mesoscale Processes, Portland, OR, Amer. Meteor. Soc., 12.1. [Available online at https://ams.confex.com/ams/pdfpapers/62675.pdf.]

  • Jing, Z., and Wiener G. , 1993: Two-dimensional dealiasing of Doppler velocities. J. Atmos. Oceanic Technol., 10, 798808.

  • Lakshmanan, V., Smith T. , Hondl K. , Stumpf G. J. , and Witt A. , 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802823.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Fritz A. , Smith T. , Hondl K. , and Stumpf G. J. , 2007a: An automated technique to quality control radar reflectivity data. J. Appl. Meteor. Climatol., 46, 288305.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Smith T. , Stumpf G. , and Hondl K. , 2007b: The Warning Decision Support System—Integrated Information. Wea. Forecasting, 22, 596612.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Zhang J. , and Howard K. , 2010: A technique to censor biological echoes in radar reflectivity data. J. Appl. Meteor. Climatol., 49, 435462.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Zhang J. , Hondl K. , and Langston C. , 2012: A statistical approach to mitigating persistent clutter in radar reflectivity data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 5, 652662.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and Doswell C. A. III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197.

    • Search Google Scholar
    • Export Citation
  • Liu, D. C., and Nocedal J. , 1989: On the limited-memory BFGS method for large-scale optimization. Math. Programm., 45, 503528.

  • Lorenc, A. C., 1992: Iterative analysis using covariance functions and filters. Quart. J. Roy. Meteor. Soc., 118, 569591.

  • Lynn, R. J., and Lakshmanan V. , 2002: Virtual radar volumes: Creation, algorithm access, and visualization. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 229–232.

  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., and Sun J. , 2003: Initialization and forecasting of thunderstorms: Specification of radar measurement errors. Preprints, 31st Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 2B.2. [Available online at https://ams.confex.com/ams/32BC31R5C/techprogram/paper_63885.htm.]

  • Purser, R. J., Wu W.-S. , Parrish D. , and Roberts N. M. , 2003: Numerical aspects of the application of recursive filters to variational statistical analysis. Part I: Spatially homogeneous and isotropic Gaussian covariances. Mon. Wea. Rev., 131, 15241535.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., and Wagner K. K. , 1976: Multiple Doppler radar observations of storms. Geophys. Res. Lett., 3, 189191.

  • Schenkman, A., Xue M. , Shapiro A. , Brewster K. , and Gao J. , 2011: The analysis and prediction of the 8–9 May 2007 Oklahoma tornadic mesoscale convective system by assimilating WSR-88D and CASA radar data using 3DVAR. Mon. Wea. Rev., 139, 224246.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Gao J. , 2010: Importance of horizontally inhomogeneous environmental initial conditions to ensemble storm-scale radar data assimilation and very short range forecasts. Mon. Wea. Rev., 138, 12501272.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., Witt A. , Mitchell E. D. , Spencer P. L. , Johnson J. T. , Eilts M. D. , Thomas K. W. , and Burgess D. W. , 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304326.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Crook N. A. , 2001: Real-time low-level wind and temperature analysis using single WSR-88D data. Wea. Forecasting, 16, 117132.

    • Search Google Scholar
    • Export Citation
  • Xie, Y., Koch S. E. , McGinley J. A. , Albers S. , and Wang N. , 2005: A sequential variational analysis approach for mesoscale data assimilation. Preprints, 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., 15B.7. [Available online at https://ams.confex.com/ams/pdfpapers/93468.pdf.]

  • Xie, Y., Koch S. E. , McGinley J. A. , Albers S. , Bieringer P. , Wolfson M. , and Chan M. , 2011: A space and time multiscale analysis system: A sequential variational analysis approach. Mon. Wea. Rev., 139, 12241240.

    • Search Google Scholar
    • Export Citation
  • Xue, M., Droegemeier K. K. , and Wong V. , 2000: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteor. Atmos. Phys., 75, 161193.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 134165.

    • Search Google Scholar
    • Export Citation
  • Xue, M., Wang D. , Gao J. , Brewster K. , and Droegemeier K. K. , 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 76, 143165.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2008: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2008 Spring Experiment. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 12.2. [Available online at https://ams.confex.com/ams/pdfpapers/142036.pdf.]

  • Zhang, F., Weng Y. , Sippel J. A. , Meng Z. , and Bishop C. H. , 2009: Convection-permitting hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter: Humberto (2007). Mon. Wea. Rev., 137, 21052125.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Howard K. , and Gourley J. J. , 2005: Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 3042.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338.

    • Search Google Scholar
    • Export Citation
  • Zhao, K., Li X. , Xue M. , Jou B. J.-D. , and Lee W.-C. , 2012: Short-term forecasting through intermittent assimilation of data from Taiwan and mainland China coastal radars for Typhoon Meranti (2010) at landfall. J. Geophys. Res., 117, D06108, doi:10.1029/2011JD017109.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 223 172 17
PDF Downloads 186 157 14

A Real-Time Weather-Adaptive 3DVAR Analysis System for Severe Weather Detections and Warnings

View More View Less
  • 1 * NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 NOAA/National Severe Storms Laboratory, and Cooperate Institute for Mesoscale Meteorological Studies, Norman, Oklahoma
  • | 3 Cooperate Institute for Mesoscale Meteorological Studies, Norman, Oklahoma, and Hunan Meteorological Bureau, Changsa, Hunan, China
  • | 4 Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A real-time, weather-adaptive three-dimensional variational data assimilation (3DVAR) system has been adapted for the NOAA Warn-on-Forecast (WoF) project to incorporate all available radar observations within a moveable analysis domain. The key features of the system include 1) incorporating radar observations from multiple Weather Surveillance Radars-1988 Doppler (WSR-88Ds) with NCEP forecast products as a background state, 2) the ability to automatically detect and analyze severe local hazardous weather events at 1-km horizontal resolution every 5 min in real time based on the current weather situation, and 3) the identification of strong circulation patterns embedded in thunderstorms. Although still in the early development stage, the system performed very well within the NOAA's Hazardous Weather Testbed (HWT) Experimental Warning Program during preliminary testing in spring 2010 when many severe weather events were successfully detected and analyzed. This study represents a first step in the assessment of this type of 3DVAR analysis for use in severe weather warnings. The eventual goal of this real-time 3DVAR system is to help meteorologists better track severe weather events and eventually provide better warning information to the public, ultimately saving lives and reducing property damage.

Corresponding author address: Jidong Gao, NOAA/National Severe Storm Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: jidong.gao@noaa.gov

Abstract

A real-time, weather-adaptive three-dimensional variational data assimilation (3DVAR) system has been adapted for the NOAA Warn-on-Forecast (WoF) project to incorporate all available radar observations within a moveable analysis domain. The key features of the system include 1) incorporating radar observations from multiple Weather Surveillance Radars-1988 Doppler (WSR-88Ds) with NCEP forecast products as a background state, 2) the ability to automatically detect and analyze severe local hazardous weather events at 1-km horizontal resolution every 5 min in real time based on the current weather situation, and 3) the identification of strong circulation patterns embedded in thunderstorms. Although still in the early development stage, the system performed very well within the NOAA's Hazardous Weather Testbed (HWT) Experimental Warning Program during preliminary testing in spring 2010 when many severe weather events were successfully detected and analyzed. This study represents a first step in the assessment of this type of 3DVAR analysis for use in severe weather warnings. The eventual goal of this real-time 3DVAR system is to help meteorologists better track severe weather events and eventually provide better warning information to the public, ultimately saving lives and reducing property damage.

Corresponding author address: Jidong Gao, NOAA/National Severe Storm Laboratory, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: jidong.gao@noaa.gov
Save