Using Frontogenesis to Identify Sting Jets in Extratropical Cyclones

David M. Schultz Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Search for other papers by David M. Schultz in
Current site
Google Scholar
PubMed
Close
and
Joseph M. Sienkiewicz NOAA/NWS/NCEP/Ocean Prediction Center, College Park, Maryland

Search for other papers by Joseph M. Sienkiewicz in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Sting jets, or surface wind maxima at the end of bent-back fronts in Shapiro–Keyser cyclones, are one cause of strong winds in extratropical cyclones. Although previous studies identified the release of conditional symmetric instability as a cause of sting jets, the mechanism to initiate its release remains unidentified. To identify this mechanism, a case study was selected of an intense cyclone over the North Atlantic Ocean during 7–8 December 2005 that possessed a sting jet detected from the NASA Quick Scatterometer (QuikSCAT). A couplet of Petterssen frontogenesis and frontolysis occurred along the bent-back front. The direct circulation associated with the frontogenesis led to ascent within the cyclonically turning portion of the warm conveyor belt, contributing to the comma-cloud head. When the bent-back front became frontolytic, an indirect circulation associated with the frontolysis, in conjunction with alongfront cold advection, led to descent within and on the warm side of the front, bringing higher-momentum air down toward the boundary layer. Sensible heat fluxes from the ocean surface and cold-air advection destabilized the boundary layer, resulting in near-neutral static stability facilitating downward mixing. Thus, descent associated with the frontolysis reaching a near-neutral boundary layer provides a physical mechanism for sting jets, is consistent with previous studies, and synthesizes existing knowledge. Specifically, this couplet of frontogenesis and frontolysis could explain why sting jets occur at the end of the bent-back front and emerge from the cloud head, why sting jets are mesoscale phenomena, and why they only occur within Shapiro–Keyser cyclones. A larger dataset of cases is necessary to test this hypothesis.

Corresponding author address: Prof. David M. Schultz, Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Simon Building, Oxford Road, Manchester M13 9PL, United Kingdom. E-mail: david.schultz@manchester.ac.uk

This article is included in the Diabatic Influence on Mesoscale Structures in Extratropical Storms (DIAMET) special collection.

Abstract

Sting jets, or surface wind maxima at the end of bent-back fronts in Shapiro–Keyser cyclones, are one cause of strong winds in extratropical cyclones. Although previous studies identified the release of conditional symmetric instability as a cause of sting jets, the mechanism to initiate its release remains unidentified. To identify this mechanism, a case study was selected of an intense cyclone over the North Atlantic Ocean during 7–8 December 2005 that possessed a sting jet detected from the NASA Quick Scatterometer (QuikSCAT). A couplet of Petterssen frontogenesis and frontolysis occurred along the bent-back front. The direct circulation associated with the frontogenesis led to ascent within the cyclonically turning portion of the warm conveyor belt, contributing to the comma-cloud head. When the bent-back front became frontolytic, an indirect circulation associated with the frontolysis, in conjunction with alongfront cold advection, led to descent within and on the warm side of the front, bringing higher-momentum air down toward the boundary layer. Sensible heat fluxes from the ocean surface and cold-air advection destabilized the boundary layer, resulting in near-neutral static stability facilitating downward mixing. Thus, descent associated with the frontolysis reaching a near-neutral boundary layer provides a physical mechanism for sting jets, is consistent with previous studies, and synthesizes existing knowledge. Specifically, this couplet of frontogenesis and frontolysis could explain why sting jets occur at the end of the bent-back front and emerge from the cloud head, why sting jets are mesoscale phenomena, and why they only occur within Shapiro–Keyser cyclones. A larger dataset of cases is necessary to test this hypothesis.

Corresponding author address: Prof. David M. Schultz, Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Simon Building, Oxford Road, Manchester M13 9PL, United Kingdom. E-mail: david.schultz@manchester.ac.uk

This article is included in the Diabatic Influence on Mesoscale Structures in Extratropical Storms (DIAMET) special collection.

Save
  • Baker, L., 2009: Sting jets in severe northern European wind storms. Weather, 64, 143148.

  • Baker, L., Gray S. L. , and Clark P. A. , 2013a: Idealised simulation of sting-jet cyclones. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2131, in press.

    • Search Google Scholar
    • Export Citation
  • Baker, L., Martínez-Alvarado O. , Methven J. , and Knippertz P. , 2013b: Flying through extratropical cyclone Friedhelm. Weather, 68, 913.

    • Search Google Scholar
    • Export Citation
  • Bennetts, D. A., and Hoskins B. J. , 1979: Conditional symmetric instability—A possible explanation for frontal rainbands. Quart. J. Roy. Meteor. Soc., 105, 945962.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., and Lin S. C. , 1984: A diagnostic analysis of the Presidents' Day storm of February 1979. Mon. Wea. Rev., 112, 21482177.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 2004: The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Quart. J. Roy. Meteor. Soc., 130, 375399.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Field M. , 2004: Evidence from Meteosat imagery of the interaction of sting jets with the boundary layer. Meteor. Appl., 11, 277289.

    • Search Google Scholar
    • Export Citation
  • Cao, Z., 2009: The sting jet in a simulated extratropical cyclone. Open Atmos. Sci. J., 3, 212218.

  • Carlson, T. N., 1980: Airflow through midlatitude cyclones and the comma cloud pattern. Mon. Wea. Rev., 108, 14981509.

  • Chang, S. W., Holt T. R. , and Sashegyi K. D. , 1996: A numerical study of the ERICA IOP 4 marine cyclone. Mon. Wea. Rev., 124, 2746.

  • Chelton, D. B., Freilich M. H. , Sienkiewicz J. M. , and Von Ahn J. M. , 2006: On the use of QuikSCAT scatterometer measurements of surface winds for marine weather prediction. Mon. Wea. Rev., 134, 20552071.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-H., and Sun W.-Y. , 2002: A one-dimensional time dependent cloud model. J. Meteor. Soc. Japan, 80, 99118.

  • Clark, P. A., Browning K. A. , and Wang C. , 2005: The sting at the end of the tail: Model diagnostics of fine-scale three-dimensional structure of the cloud head. Quart. J. Roy. Meteor. Soc., 131, 22632292.

    • Search Google Scholar
    • Export Citation
  • Crescenti, G. H., and Weller R. A. , 1992: Analysis of surface fluxes in the marine atmospheric boundary layer in the vicinity of rapidly intensifying cyclones. J. Appl. Meteor., 31, 831848.

    • Search Google Scholar
    • Export Citation
  • desJardins, M. L., Brill K. F. , and Schotz S. S. , 1991: Use of GEMPAK on UNIX workstations. Proc. Seventh Int. Conf. on Interactive Information and Processing Systems for Meteorology, Oceanography, and Hydrology, New Orleans, LA, Amer. Meteor. Soc., 449–453.

  • Eliassen, A., 1962: On the vertical circulation in frontal zones. Geofys. Publ., 24, 147160.

  • Fox, A., Sherwin R. , and Ralston F. , 2012: Lessons learnt at the Met Office from the Great Storm of 1987—A comparison with recent strong wind events. Weather, 67, 268273.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., Bosart L. F. , and Schumacher R. S. , 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138, 32723297.

    • Search Google Scholar
    • Export Citation
  • Gozzo, L. F., and da Rocha R. P. , 2013: Air–sea interaction processes influencing the development of a Shapiro–Keyser type cyclone over the subtropical South Atlantic Ocean. Pure Appl. Geophys., 170, 917934, doi:10.1007/s00024-012-0584-3.

    • Search Google Scholar
    • Export Citation
  • Gray, S. L., Martínez-Alvarado O. , Baker L. H. , and Clark P. A. , 2011: Conditional symmetric instability in sting-jet storms. Quart. J. Roy. Meteor. Soc., 137, 14821500.

    • Search Google Scholar
    • Export Citation
  • Grønås, S., 1995: The seclusion intensification of the New Year's Day storm 1992. Tellus, 47A, 733746.

  • Hanafin, J. A., and Coauthors, 2012: Phenomenal sea states and swell from a North Atlantic storm in February 2011. Bull. Amer. Meteor. Soc., 93, 18251832.

    • Search Google Scholar
    • Export Citation
  • Harr, P. A., and Elsberry R. L. , 2000: Extratropical transition of tropical cyclones over the western North Pacific. Part I: Evolution of structural characteristics during the transition process. Mon. Wea. Rev., 128, 26132633.

    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., and Leidner S. M. , 2005: An introduction to the near-real-time QuikSCAT data. Wea. Forecasting, 20, 476493.

  • Hong, S.-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181.

  • Kain, J. S., and Fritsch J. M. , 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Keshishian, L. G., and Bosart L. F. , 1987: A case study of extended East Coast frontogenesis. Mon. Wea. Rev., 115, 100117.

  • Keshishian, L. G., Bosart L. F. , and Bracken W. E. , 1994: Inverted troughs and cyclogenesis over interior North America: A limited regional climatology and case studies. Mon. Wea. Rev., 122, 565607.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., and Pecnick M. J. , 1985: A two-dimensional primitive equation model of frontogenesis forced by confluence and horizontal shear. J. Atmos. Sci., 42, 12591282.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., Reeder M. J. , and Reed R. J. , 1988: A generalization of Petterssen's frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762780.

    • Search Google Scholar
    • Export Citation
  • Knox, J. A., Frye J. D. , Durkee J. D. , and Fuhrmann C. M. , 2011: Non-convective high winds associated with extratropical cyclones. Geogr. Compass, 5, 6389.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., 1984: The role of an apparent mesoscale frontogenetic circulation in squall line initiation. Mon. Wea. Rev., 112, 20902111.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G., 2011: Midlatitude Synoptic Meteorology: Dynamics, Analysis and Forecasting. Amer. Meteor. Soc., 345 pp.

  • Lin, Y.-L., Farley R. D. , and Orville H. D. , 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092.

    • Search Google Scholar
    • Export Citation
  • Lynott, R. E., and Cramer O. P. , 1966: Detailed analysis of the 1962 Columbus Day windstorm in Oregon and Washington. Mon. Wea. Rev., 94, 105117.

    • Search Google Scholar
    • Export Citation
  • Market, P. S., and Moore J. T. , 1998: Mesoscale evolution of a continental occluded cyclone. Mon. Wea. Rev., 126, 17931811.

  • Martin, J. E., 1998a: The structure and evolution of a continental winter cyclone. Part I: Frontal structure and the occlusion process. Mon. Wea. Rev., 126, 303328.

    • Search Google Scholar
    • Export Citation
  • Martin, J. E., 1998b: The structure and evolution of a continental winter cyclone. Part II: Frontal forcing of an extreme snow event. Mon. Wea. Rev., 126, 329348.

    • Search Google Scholar
    • Export Citation
  • Martínez-Alvarado, O., Gray S. L. , Clark P. A. , and Baker L. H. , 2011: Objective detection of sting jets in low-resolution datasets. Meteor. Appl., 17, 340354.

    • Search Google Scholar
    • Export Citation
  • Martínez-Alvarado, O., Gray S. L. , Catto J. L. , and Clark P. A. , 2012: Sting jets in intense winter North-Atlantic windstorms. Environ. Res. Lett., 7, 024014.

    • Search Google Scholar
    • Export Citation
  • Mass, C., and Dotson B. , 2010: Major extratropical cyclones of the northwest United States: Historical review, climatology, and synoptic environment. Mon. Wea. Rev., 138, 24992527.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102 (D14), 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Moore, B. J., Bosart L. F. , Keyser D. , and Jurewicz M. L. , 2013: Synoptic-scale environments of predecessor rain events occurring east of the Rocky Mountains in association with Atlantic basin tropical cyclones. Mon. Wea. Rev., 141, 10221047.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Shapiro M. A. , Donall E. G. , and Kreitzberg C. W. , 1990: Diabatic modification of an extratropical marine cyclone warm sector by cold underlying water. Mon. Wea. Rev., 118, 15761590.

    • Search Google Scholar
    • Export Citation
  • Neiman, P. J., Shapiro M. A. , and Fedor L. S. , 1993: The life cycle of an extratropical marine cyclone. Part II: Mesoscale structure and diagnostics. Mon. Wea. Rev., 121, 21772199.

    • Search Google Scholar
    • Export Citation
  • Nielsen, N. W., and Sass B. H. , 2003: A numerical, high-resolution study of the life cycle of the severe storm over Denmark on 3 December 1999. Tellus, 55A, 338351.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., Bosart L. F. , Keyser D. , and Waldstreicher J. S. , 2004: An observational study of cold season–banded precipitation in northeast U.S. cyclones. Wea. Forecasting, 19, 9931010.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., Waldstreicher J. S. , Keyser D. , and Bosart L. F. , 2006: A forecast strategy for anticipating cold season mesoscale band formation within eastern U.S. cyclones. Wea. Forecasting, 21, 323.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., Colle B. A. , and Yuter S. E. , 2008: High-resolution observations and model simulations of the life cycle of an intense mesoscale snowband over the northeastern United States. Mon. Wea. Rev., 136, 14331456.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., Colle B. A. , and McTaggart-Cowan R. , 2009: The role of moist processes in the formation and evolution of mesoscale snowbands within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 137, 26622686.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., Colle B. A. , and Aiyyer A. R. , 2010: Evolution of mesoscale precipitation band environments within the comma head of northeast U.S. cyclones. Mon. Wea. Rev., 138, 23542374.

    • Search Google Scholar
    • Export Citation
  • Parton, G. A., Vaughan G. , Norton E. G. , Browning K. A. , and Clark P. A. , 2009: Wind profiler observations of a sting jet. Quart. J. Roy. Meteor. Soc., 135, 663680.

    • Search Google Scholar
    • Export Citation
  • Parton, G. A., Dore A. , and Vaughan G. , 2010: A climatology of mid-tropospheric mesoscale strong wind events as observed by the MST radar, Aberystwyth. Meteor. Appl., 17, 340354.

    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1936: Contribution to the theory of frontogenesis. Geofys. Publ., 11 (6), 127.

  • Roebber, P. J., Gyakum J. R. , and Trat D. N. , 1994: Coastal frontogenesis and precipitation during ERICA IOP 2. Wea. Forecasting, 9, 2144.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., Skamarock W. C. , and Snyder C. , 1998: Effects of surface drag on fronts within numerically simulated baroclinic waves. J. Atmos. Sci., 55, 21192129.

    • Search Google Scholar
    • Export Citation
  • Rutledge, S. A., and Hobbs P. V. , 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 29492972.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., 2000: Frontal focusing of a flooding rainstorm. Mon. Wea. Rev., 128, 41554159.

  • Satyamurty, P., and De Mattos L. F. , 1989: Climatological lower tropospheric frontogenesis in the midlatitudes due to horizontal deformation and divergence. Mon. Wea. Rev., 117, 13551364.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and Wernli H. , 1993: Structure and evolution of an isolated semi-geostrophic cyclone. Quart. J. Roy. Meteor. Soc., 119, 5790.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., 2001: Reexamining the cold conveyor belt. Mon. Wea. Rev., 129, 22052225.

  • Schultz, D. M., 2004: Cold fronts with and without prefrontal wind shifts in the central United States. Mon. Wea. Rev., 132, 20402053.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and Mass C. F. , 1993: The occlusion process in a midlatitude cyclone over land. Mon. Wea. Rev., 121, 918940.

  • Schultz, D. M., and Schumacher P. N. , 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732; Corrigendum, 128, 1573.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and Knox J. A. , 2007: Banded convection caused by frontogenesis in a conditionally, symmetrically, and inertially unstable environment. Mon. Wea. Rev., 135, 20952110.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and Zhang F. , 2007: Baroclinic development within zonally-varying flows. Quart. J. Roy. Meteor. Soc., 133, 11011112.

  • Schultz, D. M., and Vaughan G. , 2011: Occluded fronts and the occlusion process: A fresh look at conventional wisdom. Bull. Amer. Meteor. Soc., 92, 443466, ES19–ES20.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., Keyser D. , and Bosart L. F. , 1998: The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones. Mon. Wea. Rev., 126, 17671791.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., Schultz D. M. , and Knox J. A. , 2010: Convective snowbands downstream of the Rocky Mountains in an environment with conditional, dry symmetric, and inertial instabilities. Mon. Wea. Rev., 138, 44164438.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M. A., and Keyser D. , 1990: Fronts, jet streams and the tropopause. Extratropical Cyclones, The Erik Palmén Memorial Volume, C. W. Newton and E. O. Holopainen, Eds., Amer. Meteor. Soc., 167–191.

  • Skamarock, W. C., Klemp J. B. , Dudhia J. , Gill D. O. , Barker D. M. , Wang W. , and Powers J. G. , 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 100 pp. [Available online at http://wrf-model.org/wrfadmin/docs/arw_v2.pdf.]

  • Smart, D. J., and Browning K. A. , 2013: Attribution of strong winds to a cold conveyor belt and sting jet. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2162, in press.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and Mass C. F. , 1994: The structure and evolution of a simulated Rocky Mountain lee trough. Mon. Wea. Rev., 122, 27402761.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., and Mass C. F. , 1996: Interaction of an intense extratropical cyclone with coastal orography. Mon. Wea. Rev., 124, 13291352.

    • Search Google Scholar
    • Export Citation
  • Steenburgh, W. J., Neuman C. R. , West G. L. , and Bosart L. F. , 2009: Discrete frontal propagation over the Sierra–Cascade Mountains and Intermountain West. Mon. Wea. Rev., 137, 20002020.

    • Search Google Scholar
    • Export Citation
  • Takayabu, I., 1986: Roles of the horizontal advection on the formation of surface fronts and on the occlusion of a cyclone developing in the baroclinic westerly jet. J. Meteor. Soc. Japan, 64, 329345.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., Simpson J. , and McCumber M. , 1989: An ice–water saturation adjustment. Mon. Wea. Rev., 117, 231235.

  • Thorpe, A. J., and Emanuel K. A. , 1985: Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sci., 42, 18091824.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Schultz D. M. , Ryzhkov A. V. , and Holle R. L. , 2001: Multiscale structure and evolution of an Oklahoma winter precipitation event. Mon. Wea. Rev., 129, 486501.

    • Search Google Scholar
    • Export Citation
  • Von Ahn, J., Sienkiewicz J. , and McFadden G. , 2005: Hurricane force extratropical cyclones observed using QuikSCAT near real time winds. Mar. Wea. Log, 49 (1). [Available online at http://www.vos.noaa.gov/MWL/april_05/cyclones.shtml.]

    • Search Google Scholar
    • Export Citation
  • Von Ahn, J., Sienkiewicz J. , and Chang P. S. , 2006: Operational impact of QuikSCAT winds at the NOAA Ocean Prediction Center. Wea. Forecasting, 21, 523539.

    • Search Google Scholar
    • Export Citation
  • West, G. L., and Steenburgh W. J. , 2010: Life cycle and mesoscale frontal structure of an intermountain cyclone. Mon. Wea. Rev., 138, 25282545.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 7621 6375 178
PDF Downloads 983 191 12