• Aksoy, A., Dowell D. C. , and Snyder C. , 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 18051824.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., Wyngaard J. C. , and Fritsch J. M. , 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416.

    • Search Google Scholar
    • Export Citation
  • Caya, A., Sun J. , and Snyder C. , 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133, 30813094.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., Stensrud D. J. , and Wicker L. J. , 2006: Effects of upper-level shear on the structure and maintenance of strong quasi-linear mesoscale convective systems. J. Atmos. Sci., 63, 12311252.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, Xue M. , Milbrandt J. A. , and Yau M. K. , 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, Wicker L. J. , Mansell E. R. , and Tanamachi R. L. , 2012: Impact of the environmental low-level wind profile on ensemble forecasts of the 4 May 2007 Greensburg, Kansas, tornadic storm and associated mesocyclones. Mon. Wea. Rev., 140, 696716.

    • Search Google Scholar
    • Export Citation
  • Dong, J., Xue M. , and Droegemeier K. , 2011: The analysis and impact of simulated high-resolution surface observations in addition to radar data for convective storms with an ensemble Kalman filter. Meteor. Atmos. Phys., 112, 4161.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., and Wicker L. J. , 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., Zhang F. , Wicker L. J. , Snyder C. , and Crook N. A. , 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005.

    • Search Google Scholar
    • Export Citation
  • Gaspari, G., and Cohn S. E. , 1999: Construction of correlation functions in two and three dimensions. Quart. J. Roy. Meteor. Soc., 125, 723757.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., and Schär C. , 2007: Predictability and error growth dynamics in cloud-resolving models. J. Atmos. Sci., 64, 44674478.

    • Search Google Scholar
    • Export Citation
  • Joss, J., and Waldvogel A. , 1970: Raindrop size distribution and Doppler velocities. Preprints, 14th Conf. on Radar Meteorology, Tucson, AZ, Amer. Meteor. Soc., 153–156.

  • Kalnay, E., and Yang S.-C. , 2010: Accelerating the spin-up of ensemble Kalman filtering. Quart. J. Roy. Meteor. Soc., 136, 16441651.

  • Kingfield, D. M., LaDue J. G. , and Ortega K. L. , 2012: An evaluation of tornado intensity using velocity and strength attributes from the WSR-88D mesocyclone detection algorithm. Preprints, 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 3.2. [Available online at https://ams.confex.com/ams/26SLS/webprogram/Paper211488.html.]

  • LaDue, J. G., Ortega K. , Smith B. , Stumpf G. , and Kingfield D. , 2012: A comparison of high resolution tornado surveys to Doppler radar observed vortex parameters: 2011–2012 case studies. Preprints, 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 6.3. [Available online at https://ams.confex.com/ams/26SLS/webprogram/Paper212627.html.]

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307.

  • Maddox, R. A., Zhang J. , Gourley J. J. , and Howard K. W. , 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927934.

    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., Ziegler C. L. , and Bruning E. C. , 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., Straka J. M. , and Rasmussen E. N. , 2002: Direct surface thermodynamic observations within the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and Yau M. K. , 2006: A multimoment bulk microphysics parameterization. Part IV: Sensitivity experiments. J. Atmos. Sci., 63, 31373159.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., and Wicker L. J. , 2012: Comparison between dual-Doppler and EnKF storm-scale wind analyses: Observing system simulation experiments with a supercell thunderstorm. Mon. Wea. Rev., 140, 3972–3991.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., Wicker L. J. , Betten D. , Biggerstaff M. I. , and Shapiro A. , 2013: Comparison between dual-Doppler and EnKF storm-scale wind analyses: The 29–30 May 2004 Geary, Oklahoma, supercell thunderstorm. Mon. Wea. Rev.,141, 1612–1628.

  • Sakov, P., Evensen G. , and Bertino L. , 2010: Asynchronous data assimilation with the EnKF: Tellus, 62, 2429.

  • Schenkman, A. D., Xue M. , Shapiro A. , Brewster K. , and Gao J. , 2011: Impact of CASA radar and Oklahoma mesonet data assimilation on the analysis and prediction of tornadic mesovortices in an MCS. Mon. Wea. Rev., 139, 34223445.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280.

    • Search Google Scholar
    • Export Citation
  • Shabbott, C. J., and Markowski P. M. , 2006: Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 14221441.

    • Search Google Scholar
    • Export Citation
  • Snook, N., Xue M. , and Jung Y. , 2012: Ensemble probabilistic forecasts of a tornadic mesoscale convective system from ensemble Kalman filter analyses using WSR-88D and CASA radar data. Mon. Wea. Rev., 140, 21262146.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and Zhang F. , 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Gao J. , 2010: Importance of horizontally inhomogeneous environmental initial conditions to ensemble storm-scale radar data assimilation and very short-range forecasts. Mon. Wea. Rev., 138, 12501272.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system. Bull. Amer. Meteor. Soc., 90, 14871499.

  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with warn-on-forecast. Atmos. Res., 123, 2–16.

  • Thompson, T. E., Wicker L. J. , and Wang X. , 2012: Impact from a volumetric radar-sampling operator for radial velocity observations within EnKF supercell assimilation. J. Atmos. Oceanic Technol., 29, 14171427.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and Xue M. , 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807.

    • Search Google Scholar
    • Export Citation
  • Toth, M., Trapp R. J. , Wurman J. , and Kosiba K. A. , 2013: Comparison of mobile-radar measurements of tornado intensity with corresponding WSR-88D measurements. Wea. Forecasting,28, 418426.

  • Trapp, R. J., Stumpf G. J. , and Manross K. L. , 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680687.

    • Search Google Scholar
    • Export Citation
  • Wang, S., Xue M. , and Min J. , 2012: A four-dimensional asynchronous ensemble square-root filter (4DEnSRF) algorithm and tests with simulated radar data. Quart. J. Roy. Meteor. Soc., 139A, 805–819, doi:10.1002/qj.1987.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Klemp J. B. , 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev., 110, 504520.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Klemp J. B. , 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and Hamill T. M. , 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924.

  • Wicker, L. J., and Skamarock W. C. , 2002: Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev., 130, 20882097.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., Brown R. A. , and Dowell D. C. , 2009: Simulated WSR-88D velocity and reflectivity signatures of numerically modeled tornadoes. J. Atmos. Oceanic Technol., 26, 876893.

    • Search Google Scholar
    • Export Citation
  • Yussouf, N., and Stensrud D. J. , 2010: Impact of high temporal frequency phased array radar data to storm-scale ensemble data assimilation using observation system simulation experiments. Mon. Wea. Rev., 138, 517538.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Snyder C. , and Rotunno R. , 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185.

  • Ziegler, C. L., 1985: Retrieval of thermal and microphysical variables in observed convective storms. Part 1: Model development and preliminary testing. J. Atmos. Sci., 42, 14871509.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 80 51 0
PDF Downloads 63 37 0

Assessing Ensemble Forecasts of Low-Level Supercell Rotation within an OSSE Framework

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
Restricted access

Abstract

Under the envisioned warn-on-forecast (WoF) paradigm, ensemble model guidance will play an increasingly critical role in the tornado warning process. While computational constraints will likely preclude explicit tornado prediction in initial WoF systems, real-time forecasts of low-level mesocyclone-scale rotation appear achievable within the next decade. Given that low-level mesocyclones are significantly more likely than higher-based mesocyclones to be tornadic, intensity and trajectory forecasts of low-level supercell rotation could provide valuable guidance to tornado warning and nowcasting operations. The efficacy of such forecasts is explored using three simulated supercells having weak, moderate, or strong low-level rotation. The results suggest early WoF systems may provide useful probabilistic 30–60-min forecasts of low-level supercell rotation, even in cases of large radar–storm distances and/or narrow cross-beam angles. Given the idealized nature of the experiments, however, they are best viewed as providing an upper-limit estimate of the accuracy of early WoF systems.

Corresponding author address: Dr. Corey K. Potvin, National Severe Storms Laboratory, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: corey.potvin@noaa.gov

Abstract

Under the envisioned warn-on-forecast (WoF) paradigm, ensemble model guidance will play an increasingly critical role in the tornado warning process. While computational constraints will likely preclude explicit tornado prediction in initial WoF systems, real-time forecasts of low-level mesocyclone-scale rotation appear achievable within the next decade. Given that low-level mesocyclones are significantly more likely than higher-based mesocyclones to be tornadic, intensity and trajectory forecasts of low-level supercell rotation could provide valuable guidance to tornado warning and nowcasting operations. The efficacy of such forecasts is explored using three simulated supercells having weak, moderate, or strong low-level rotation. The results suggest early WoF systems may provide useful probabilistic 30–60-min forecasts of low-level supercell rotation, even in cases of large radar–storm distances and/or narrow cross-beam angles. Given the idealized nature of the experiments, however, they are best viewed as providing an upper-limit estimate of the accuracy of early WoF systems.

Corresponding author address: Dr. Corey K. Potvin, National Severe Storms Laboratory, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: corey.potvin@noaa.gov
Save