Evaluation of Various Surface Wind Products with OceanSITES Buoy Measurements

Ge Peng * CICS-NC, North Carolina State University, and NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Ge Peng in
Current site
Google Scholar
PubMed
Close
,
Huai-Min Zhang NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Huai-Min Zhang in
Current site
Google Scholar
PubMed
Close
,
Helmut P. Frank Deutscher Wetterdienst, Offenbach, Germany

Search for other papers by Helmut P. Frank in
Current site
Google Scholar
PubMed
Close
,
Jean-Raymond Bidlot ECMWF, Reading, United Kingdom

Search for other papers by Jean-Raymond Bidlot in
Current site
Google Scholar
PubMed
Close
,
Masakazu Higaki Japan Meteorological Agency, Tokyo, Japan

Search for other papers by Masakazu Higaki in
Current site
Google Scholar
PubMed
Close
,
Scott Stevens * CICS-NC, North Carolina State University, and NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by Scott Stevens in
Current site
Google Scholar
PubMed
Close
, and
William R. Hankins ** ERT, Inc., and NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by William R. Hankins in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

To facilitate evaluation and monitoring of numerical weather prediction model forecasts and satellite-based products against high-quality in situ observations, a data repository for collocated model forecasts, a satellite product, and in situ observations has been created under the support of various World Climate Research Program (WCRP) working groups. Daily measurements from 11 OceanSITES buoys are used as the reference dataset to evaluate five ocean surface wind products (three short-range forecasts, one reanalysis, and one satellite based) over a 1-yr intensive analysis period, using the WCRP community weather prediction model evaluation metrics. All five wind products correlate well with the buoy winds with correlations above 0.76 for all 11 buoy stations except the meridional wind at four stations, where the satellite and model performances are weakest in estimating the meridional wind (or wind direction). The reanalysis has higher cross-correlation coefficients (above 0.83) and smaller root-mean-square (RMS) errors than others. The satellite wind shows larger variability than that observed by buoys; contrarily, the models underestimate the variability. For the zonal and meridional winds, although the magnitude of biases averaged over all the stations are mostly <0.12 m s−1 for each product, the magnitude of biases at individual stations can be >1.2 m s−1, confirming the need for regional/site analysis when characterizing any wind product. On wind direction, systematic negative (positive) biases are found in the central (east central) Pacific Ocean. Wind speed and direction errors could induce erroneous ocean currents and states from ocean models driven by these products. The deficiencies revealed here are useful for product and model improvement.

Corresponding author address: Dr. Ge Peng, CICS-NC, NOAA/NCDC/RSAD, 151 Patton Ave., Asheville, NC 28801. E-mail: ge.peng@noaa.gov

Abstract

To facilitate evaluation and monitoring of numerical weather prediction model forecasts and satellite-based products against high-quality in situ observations, a data repository for collocated model forecasts, a satellite product, and in situ observations has been created under the support of various World Climate Research Program (WCRP) working groups. Daily measurements from 11 OceanSITES buoys are used as the reference dataset to evaluate five ocean surface wind products (three short-range forecasts, one reanalysis, and one satellite based) over a 1-yr intensive analysis period, using the WCRP community weather prediction model evaluation metrics. All five wind products correlate well with the buoy winds with correlations above 0.76 for all 11 buoy stations except the meridional wind at four stations, where the satellite and model performances are weakest in estimating the meridional wind (or wind direction). The reanalysis has higher cross-correlation coefficients (above 0.83) and smaller root-mean-square (RMS) errors than others. The satellite wind shows larger variability than that observed by buoys; contrarily, the models underestimate the variability. For the zonal and meridional winds, although the magnitude of biases averaged over all the stations are mostly <0.12 m s−1 for each product, the magnitude of biases at individual stations can be >1.2 m s−1, confirming the need for regional/site analysis when characterizing any wind product. On wind direction, systematic negative (positive) biases are found in the central (east central) Pacific Ocean. Wind speed and direction errors could induce erroneous ocean currents and states from ocean models driven by these products. The deficiencies revealed here are useful for product and model improvement.

Corresponding author address: Dr. Ge Peng, CICS-NC, NOAA/NCDC/RSAD, 151 Patton Ave., Asheville, NC 28801. E-mail: ge.peng@noaa.gov
Save
  • Abdalla, S., Janssen P. A. E. M. , and Bidlot J.-R. , 2011: Altimeter near real time wind and wave products: Random error estimation. Mar. Geod., 34, 393–406.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., Geer A. J. , Lopez P. , and Salmond D. , 2010: Direct 4D-Var assimilation of all-sky radiances. Part I: Implementation. Quart. J. Roy. Meteor. Soc., 136, 18681885.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., and Coauthors, 2012: Progress in predicting tropical systems: The role of convection. ECMWF Tech. Memo. 685, ECMWF, Reading, United Kingdom, 61 pp.

  • Bourassa, M. A., and Coauthors, 2010: Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society Conference, J. Hall, D. E. Harrison, and D. Stammer, Eds., Vol. 2, ESA Publ. WPP-306, doi:10.5270/OceanObs09.cwp.08.

  • Bourlès, B., and Coauthors, 2008: The PIRATA program: History, accomplishments, and future directions. Bull. Amer. Meteor. Soc., 89, 11111125.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., Beljaars A. C. M. , Hersbach H. , Hollingsworth A. , Miller M. , and Vasiljevic D. , 2005: Wind turning across the marine atmospheric boundary layer. Quart. J. Roy. Meteor. Soc., 131, 12331250.

    • Search Google Scholar
    • Export Citation
  • Brunke, M. A., Fairall C. W. , Zeng X. , Eymard L. , Laurence C. , and Cury J. A. , 2003: Which bulk aerodynamic algorithms are least problematic in computing ocean surface turbulent fluxes? J. Climate, 16, 619635.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and Freilich M. H. , 2005: Scatterometer-based assessment of 10-m wind analyses from the operational ECMWF and NCEP numerical weather prediction models. Mon. Wea. Rev., 133, 409429.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., Schlax M. G. , Freilich M. H. , and Miliff R. F. , 2004: Satellite measurements reveal persistent small-scale features in ocean winds. Science, 303, 978983.

    • Search Google Scholar
    • Export Citation
  • Cornillon, P., and Park K. A. , 2001: Warm core ring velocities inferred from NSCAT. Geophys. Res. Lett., 28, 575578.

  • Cronin, M. F., Meinig C. , Sabine C. L. , Ichikawa H. , and Tomita H. , 2008: Surface mooring network in the Kuroshio Extension. IEEE Syst. J., 2, 424430.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2004: SEAFLUX. Bull. Amer. Meteor. Soc., 85, 409424.

  • Dickinson, S., Kelly K. A. , Caruso M. J. , and McPhaden M. J. , 2001: Comparison between the TAO buoy and NASA Scatterometer wind vectors. J. Atmos. Oceanic Technol., 18, 779806.

    • Search Google Scholar
    • Export Citation
  • Donohue, K. A., and Coauthors, 2008: Program studies the Kuroshio Extension. Eos, Trans. Amer. Geophys. Union, 89, 161162.

  • Draper, D. W., and Long D. G. , 2004: Evaluating the effect of rain on SeaWinds scatterometer measurements. J. Geophys. Res., 109 (C12), doi:10.1029/2002JC001741.

    • Search Google Scholar
    • Export Citation
  • Dukhovskoy, D., and Bourassa M. , 2011: Comparison of ocean surface wind products in the perspective of ocean modeling of the Nordic Seas. Proc. Oceans 2011, Waikoloa, Hawaii, IEEE, 110430-002.

  • Dunbar, R. S., Hsiao S. V. , and Lambrigtsen B. H. , 1991a: Science algorithm specifications for the NASA Scatterometer project: Sensor algorithms. JPL D-5610-1, Jet Propulsion Laboratory, Pasadena, CA, 694 pp.

  • Dunbar, R. S., Hsiao S. V. , and Lambrigtsen B. H. , 1991b: Science algorithm specifications for the NASA Scatterometer project: Geophysical algorithms. JPL D-5610-2, Jet Propulsion Laboratory, Pasadena, CA, 388 pp.

  • Ebuchi, N., Craber H. C. , and Caruso M. J. , 2002: Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Oceanic Technol., 19, 20492062.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Hare J. E. , Grachev A. A. , and Edson J. B. , 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., and Dunbar R. S. , 1999: The accuracy of the NSCAT 1 vector winds: Comparisons with National Data Buoy Center buoys. J. Geophys. Res., 104 (C5), 11 23111 246.

    • Search Google Scholar
    • Export Citation
  • Freilich, M. H., and Vanhoff B. A. , 2006: The accuracy of preliminary WindSat vector wind measurements: Comparisons with NDBC buoys and QuikSCAT. IEEE Trans. Geosci. Remote Sens., 40, 622637.

    • Search Google Scholar
    • Export Citation
  • Freitag, H. P., O'Haleck M. , Thomas G. C. , and McPhaden M. J. , 2001: Calibration procedures and instrumental accuracies for ATLAS wind measurements. NOAA Tech. Memo. OAR PMEL-119, 20 pp.

  • Gilhousen, D. B., 1987: A field evaluation of NBDC moored buoy winds. J. Atmos. Oceanic Technol., 4, 94104.

  • Hersbach, H., and Bidlot J.-R. , 2008: The relevance of ocean surface current in the ECMWF analysis and forecast system. Proc. Workshop on Atmosphere–Ocean Interactions, Reading, United Kingdom, ECMWF, 61–73. [Available online at http://www.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2008/Atmos_Ocean_Interaction/Hersbach.pdf.]

  • Hollinger, J., Lo R. , Poe G. , Savage R. , and Pierce J. , 1987: Special Sensor Microwave/Imager's user's guide. NRL Tech. Rep., 120 pp.

  • Iwamura, K., and Kitagawa H. , 2008: An upgrade of the JMA Operational Global NWP model. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling, No. 38, WMO, 6.3–6.4. [Available online at http://www.wcrp-climate.org/WGNE/BlueBook/2008/chapters/BB_08_S6.pdf.]

  • Josse, P., Caniaux G. , and Planton S. , 1999: Intercomparison of ocean-atmosphere fluxes from oceanic and atmospheric forced and coupled mesoscale simulations. Ann. Geophys., 17, 566576.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., Wallcraft A. J. , and Bourassa M. A. , 2008: Air-sea stability effects on the 10 m winds over the global ocean: Evaluations of air–sea flux algorithms. J. Geophys. Res., 113, C04009, doi:10.1029/2007JC004324.

    • Search Google Scholar
    • Export Citation
  • Kelly, K. A., Dickinson S. , McPhaden M. J. , and Johnson G. C. , 2001: Ocean currents evident in satellite wind data. Geophys. Res. Lett., 28, 24692472.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., Barnes W. , Kozu T. , Shiue J. , and Simpson J. , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817.

    • Search Google Scholar
    • Export Citation
  • Large, W. G., Holland W. R. , and Evans J. C. , 1991: Quasi-geostrophic response to real wind forcing: The effects of temporal smoothing. J. Phys. Oceanogr., 21, 9981017.

    • Search Google Scholar
    • Export Citation
  • Liu, W. T., and Tang W. , 1996: Equivalent neutral wind. JPL Publ. 96-17, Jet Propulsion Laboratory, 16 pp.

  • Liu, W. T., Tang W. , and Polito P. S. , 1998: NASA Scatterometer provides global ocean-surface wind fields with more structures than numerical weather prediction. Geophys. Res. Lett., 25, 761764.

    • Search Google Scholar
    • Export Citation
  • Majewski, D., Liermann D. , Prohl P. , Ritter B. , Buchhold M. , Hanisch T. , Paul G. , and Wergen W. , 2002: The operational global icosahedral–hexagonal gridpoint model GME: Description and high-resolution tests, Mon. Wea. Rev., 130, 319338.

    • Search Google Scholar
    • Export Citation
  • May, J. C., and Bourassa M. A. , 2011: Quantifying variance due to temporal and spatial difference between ship and satellite winds. J. Geophys. Res., 116, C08013, doi:10.1029/2010JC006931.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 1998: The Tropical Ocean-Global Atmosphere (TOGA) observing system: A decade of progress. J. Geophys. Res., 103 (C7), 14 16914 240.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., Smith D. K. , and Wentz F. , 2001: Comparison of Special Sensor Microwave Imager and buoy-measured wind speeds from 1987 to 1997. J. Geophys. Res., 106 (C6), 11 71911 729.

    • Search Google Scholar
    • Export Citation
  • Nakagawa, M., 2009: Outline of the high resolution global model at the Japan Meteorological Agency. RSMC Tokyo-Typhoon Center Tech. Review 11, 13 pp.

  • Peixoto, J. P., and Oort A. H. , 1992: Physics of Climate. American Institute of Physics, 520 pp.

  • Peng, G., 2004: Validation of a global reanalysis model in representing synoptic-scale eddies using scatterometer data: A case study. Geophys. Res. Lett., 31, L16201, doi:10.1029/2004GL020297.

    • Search Google Scholar
    • Export Citation
  • Peng, G., Mooers C. N. K. , and Graber H. C. , 1999: Coastal winds in south Florida. J. Appl. Meteor., 38, 17401757.

  • Peng, G., Zhang H.-M. , Frank H. P. , Bidlot J.-R. , Higaki M. , and Hankins W. , 2011: A comparison of various equatorial Pacific surface wind products. Proc. 2011 Int. Geoscience and Remote Sensing Symp., Vancouver, BC, Canada, IEEE, 20492052.

  • Phillips, T. J., and Coauthors, 2004: Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Amer. Meteor. Soc.,85, 1903–1915.

  • Reynolds, R. W., Arpe K. , Gordon C. , Hayes S. P. , Leetmaa A. , and McPhaden M. J. , 1989: A comparison of tropical Pacific surface wind analyses. J. Climate, 2, 105111.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057.

  • Tang, W., Liu W. T. , and Stiles B. W. , 2004: Evaluation of high-resolution ocean surface vector winds measured by QuikSCAT scatterometer in coastal region. IEEE Trans. Geosci. Remote Sens., 42, 17621769.

    • Search Google Scholar
    • Export Citation
  • Untch, A., Miller M. , Hortal M. , Buizza R. , and Janssen P. , 2006: Towards a global meso-scale model: The high-resolution system T799L91 and T399L62 EPS. ECMWF Newsletter, No. 108, ECMWF, Reading, United Kingdom, 6–13.

  • WCRP, 2012: Action plan for WCRP research activities on surface fluxes. WCRP Informal/Series Rep. 01/2012, 10 pp. [Available online at http://www.wmo.int/pages/prog/gcos/apocXVII/4a_Surface_Fluxes.pdf.]

  • Weissman, D. E., Bourassa M. A. , and Tongue J. , 2002: Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors. J. Atmos. Oceanic Technol., 19, 738746.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., 1997: A well-calibrated ocean algorithm for SSM/I. J. Geophys. Res., 102 (C4), 87038718.

  • Wentz, F. J., and Meissner T. , 2000: AMSR ocean algorithm, version 2. RSS Tech. Rep. 121599A-1, Remote Sensing Systems, Santa Rosa, CA, 59 pp. [Available online at http://www.remss.com/papers/amsr/AMSR_Ocean_Algorithm_Version_2.pdf.]

  • Wentz, F. J., Ricciardulli L. , Hilburn K. A. , and Mears C. A. , 2007: How much more rain will global warming bring? Science,317, 233–235. [Supplementary material available online at http://www.sciencemag.org/cgi/data/1140746/DC1/1.]

  • WMO, 1999: Commission for Basic Systems abridged final report with resolutions and recommendations. WMO Rep. 893, 184 pp. [Available online at www.wmo.int/pages/prog/www/ois/Operational_Information/Publications/CBS/CBS_Ext_893/893_en.pdf.]

  • Zhang, H.-M., Reynolds R. W. , and Smith T. M. , 2004: Bias statistics of the AVHRR sea surface temperature. Geophys. Res. Lett., 31, L01307, doi:10.1029/2003GL018804.

    • Search Google Scholar
    • Export Citation
  • Zhang, H.-M., Bates J. J. , and Reynolds R. W. , 2006: Assessment of composite global sampling: Sea surface wind speed. Geophys. Res. Lett., 33, L17714, doi:10.1029/2006GL027086.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2007 1346 44
PDF Downloads 593 134 9