• Blockeel, H., , and Struyf J. , 2002: Efficient algorithms for decision tree cross-validation. J. Mach. Learn. Res., 3, 621650, doi:10.1162/jmlr.2003.3.4-5.21.

    • Search Google Scholar
    • Export Citation
  • Branstator, G., 2002: Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J. Climate, 15, 18931910.

    • Search Google Scholar
    • Export Citation
  • Chang, C. P., , Zhang Y. , , and Li T. , 2000: Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: Roles of the subtropical ridge. J. Climate, 13, 43104325.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., , and Shukla J. , 1981: Predictability of monsoons. Monsoon Dynamics, J. Lighthill, Ed., Cambridge University Press, 99–110.

  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847–940.

  • Ding, Q., , and Wang B. , 2005: Circumglobal teleconnection in the Northern Hemisphere summer. J. Climate, 18, 34833505.

  • Ding, Y., , and Chan J. C. L. , 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117142.

  • Enomoto, T., 2004: Interannual variability of the Bonin high associated with the propagation of Rossby waves along the Asian jet. J. Meteor. Soc. Japan, 82, 10191034.

    • Search Google Scholar
    • Export Citation
  • Gerrity, J. P., Jr., 1992: A note on Gandin and Murphy's equitable skill score. Mon. Wea. Rev., 120, 27072712.

  • Gill, A. E., 1980: Some simple solutions for heat induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447462.

  • Gong, D.-Y., , and Ho D.-H. , 2003: Arctic oscillation signals in the East Asian summer monsoon. J. Geophys. Res.,108, 4066, doi:10.1029/2002JD002193.

  • Huffman, G. J., and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520.

    • Search Google Scholar
    • Export Citation
  • Kanamitsu, M., , Ebisuzake W. , , Woolen J. , , Yang S.-K. , , Hnilo J. J. , , Fiorino M. , , and Potter G. L. , 2002: NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 16311643.

    • Search Google Scholar
    • Export Citation
  • Kim, J.-E., , Yeh S.-W. , , and Hong S.-Y. , 2009: Two types of strong northeast Asian summer monsoon. J. Climate, 22, 44064417.

  • Kim, M.-K., , and Kim Y.-H. , 2010: Seasonal prediction of monthly precipitation in China using large-scale climate indices. Adv. Atmos. Sci., 27, 4759, doi:10.1007/s00376-009-8014-x.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., , Kishtawal C. M. , , La Row T. E. , , Bachiochi D. R. , , Zhang Z. , , Williford C. E. , , Gadgil S. , , and Surendran S. , 1999: Improved weather and seasonal climate forecasts from multimodel superensemble. Science, 285, 15481550, doi:10.1126/science.285.5433.1548.

    • Search Google Scholar
    • Export Citation
  • Kwon, M.-H., , Jhun J.-G. , , Wang B. , , An S.-I. , , and Kug J.-S. , 2005: Decadal change in relationship between East Asian and WNP summer monsoons. Geophys. Res. Lett., 32, L16709, doi:10.1029/2005GL023026.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , and Weng H. , 2002: Recurrent teleconnection patterns linking summertime precipitation variability over East Asia and North America. J. Meteor. Soc. Japan, 80, 13091324.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , Kim K.-M. , , and Yang S. , 2000: Dynamical and boundary forcing characteristics of regional components of the Asian summer monsoon. J. Climate, 13, 24612482.

    • Search Google Scholar
    • Export Citation
  • Lau, K.-M., , Lee J.-Y. , , Kim K.-M. , , and Kang I.-S. , 2004: The North Pacific as a regulator of summertime climate over Eurasia and North America. J. Climate, 17, 819833.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and Holopainen E. O. , 1984: Transient eddy forcing of the time-mean flow as identified by geopotential tendencies. J. Atmos. Sci., 41, 313328.

    • Search Google Scholar
    • Export Citation
  • Lau, N.-C., , and Nath M. J. , 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48, 25892613.

    • Search Google Scholar
    • Export Citation
  • Lee, E., , Chase T. N. , , and Rajagopalan B. , 2008a: Highly improved predictive skill in the forecasting of the East Asian summer monsoon. Water Resour. Res., 44, W10422, doi:10.1029/2007WR06514.

    • Search Google Scholar
    • Export Citation
  • Lee, E., , Chase T. N. , , and Rajagopalan B. , 2008b: Seasonal forecasting of East Asian summer monsoon based on oceanic heat sources. Int. J. Climatol., 28, 667678.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., 1990: Variability of skill of long-range forecasts and implications for their use and value. Bull. Amer. Meteor. Soc., 71, 300309.

    • Search Google Scholar
    • Export Citation
  • Livezey, R. E., 2003: Categorical events. Forecast Verification: A Practitioner's Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., Wiley, 77–96.

  • Michaelsen, J., 1987: Cross-validation in statistical climate forecast model. J. Climate Appl. Meteor., 26, 15891600.

  • Nakamura, H., , and Shimpo A. , 2004: Seasonal variations in the Southern Hemisphere storm tracks and jet streams as revealed in a reanalysis dataset. J. Climate, 17, 18281844.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , Sampe T. , , Tanimoto Y. , , and Shimpo A. , 2004: Observed associations among storm tracks, jet streams and midlatitude oceanic fronts. Earth's Climate: The Ocean–Atmosphere Interaction, Geophys. Monogr., Vol. 147, Amer. Geophys. Union, 329345.

    • Search Google Scholar
    • Export Citation
  • Nakamura, H., , Sampe T. , , Goto A. , , Ohfuchi W. , , and Xie S.-P. , 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, doi:10.1029/2008GL034010.

    • Search Google Scholar
    • Export Citation
  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan, 65, 373390.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., 2003: Kuroshio extension variability and forcing of the Pacific decadal oscillations responses and potential feedback. J. Phys. Oceanogr., 33, 24652466.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and Joyce T. M. , 1992: Interannual variability in the mid- and low-latitude western North Pacific. J. Phys. Oceanogr., 22, 10621079.

    • Search Google Scholar
    • Export Citation
  • Qiu, B., , and Kelly K. A. , 1993: Upper-ocean heat balance in the Kuroshio extension region. J. Phys. Oceanogr., 23, 20272041.

  • Reynolds, R. W., , Smith T. M. , , Liu C. , , Chelton D. B. , , Casey K. S. , , and Schlax M. G. , 2007: Daily high-resolution-blended analyses for sea surface temperature. J. Climate, 20, 54735496.

    • Search Google Scholar
    • Export Citation
  • Rogerson, P. A., 2001: Statistical Methods for Geography. SAGE Publications, 136 pp.

  • Sampe, T., , and Xie S.-P. , 2010: Large-scale dynamics of the meiyu-baiu rainband: Environmental forcing by the westerly jet. J. Climate, 23, 113134.

    • Search Google Scholar
    • Export Citation
  • Sampe, T., , Nakamura H. , , Goto A. , , and Ohfuchi W. , 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate, 23, 17931814.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., , Son J.-H. , , and Lee J.-Y. , 2011: A new look at changma: Atmosphere. Korean Meteor. Soc., 21, 109121.

  • Seo, K.-H., , Son J.-H. , , Lee S.-E. , , Tomita T. , , and Park H.-S. , 2012: Mechanisms of an extraordinary East Asian summer monsoon event in July 2011. Geophys. Res. Lett., 39, L05704, doi:10.1029/2011GL050378.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., , Ok J. , , Son J.-H. , , and Cha D.-H. , 2013: Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 76627675.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1998: Predictability in the midst of chaos: A scientific basis for climate forecasting. Science, 282, 728731, doi:10.1126/science.282.5389.728.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., , and Mooley D. A. , 1987: Empirical prediction of the summer monsoon rainfall over India. Mon. Wea. Rev., 115, 695704.

  • Sperber, K. R., , and Palmer T. , 1996: Interannual tropical rainfall variability in general circulation model simulations associated with the Atmospheric Model Intercomparison Project. J. Climate, 9, 27272750.

    • Search Google Scholar
    • Export Citation
  • Sun, J., , Wang H. , , and Yuan W. , 2008: Decadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperature. J. Geophys. Res., 113, D15107, doi:10.1029/2007JD009626.

    • Search Google Scholar
    • Export Citation
  • Sung, M.-K., , Kwon W.-T. , , Baek H.-J. , , Boo K.-O. , , Lim G.-H. , , and Kug J.-S. , 2006: A possible impact of the North Atlantic Oscillation on the East Asian summer monsoon precipitation. Geophys. Res. Lett., 33, L21713, doi:10.1029/2006GL027253.

    • Search Google Scholar
    • Export Citation
  • Vallis, G. K., , and Gerber E. P. , 2008: Local and hemispheric dynamics of the North Atlantic Oscillation, annular patterns and the zonal index. Dyn. Atmos. Oceans, 44, 184212.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , Wu R. , , and Fu X. , 2000: Pacific–East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 15171536.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , Wu R. , , and Lau K.-M. , 2001: Interannual variability of the Asian summer monsoon: Contrasts between the Indian and the western North Pacific–East Asian monsoons. J. Climate, 14, 40734090.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , Kang I.-S. , , and Lee J.-Y. , 2004: Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs. J. Climate, 17, 803818.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , Bao Q. , , Hoskins B. , , Wu G. , , and Liu Y. , 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, doi:10.1029/2008GL034330.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , Liu J. , , Yang J. , , Zhou T. , , and Wu Z. , 2009a: Distinct principal modes of early and late summer rainfall anomalies in East Asia. J. Climate, 22, 38643875.

    • Search Google Scholar
    • Export Citation
  • Wang, B., and Coauthors, 2009b: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93117.

    • Search Google Scholar
    • Export Citation
  • Wang, B., , Xiang B. , , and Lee J.-Y. , 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA,110, 2718–2722, doi:10.1073/pnas.1214626110.

  • Webster, P. J., , Magana V. O. , , Palmer T. N. , , Shukla J. , , Tomas R. A. , , Yanai M. , , and Yasunari T. , 1998: Monsoons: Processes, predictability, and prospects for prediction. J. Geophys. Res., 103 (C7), 14 45214 510.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 630 pp.

  • WMO, 2010: Attachment II. Global Aspects, Vol. I, Manual on the Global Data-Processing and Forecasting System, World Meteorological Organization, WMO-485, II.8-1–II.8-17.

  • Wu, Z., , Wang B. , , Li J. , , and Jin F.-F. , 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi:10.1029/2009JD011733.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., , Hu K. , , Hafner J. , , Tokinaga H. , , Du Y. , , Huang G. , , and Sampe T. , 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730747.

    • Search Google Scholar
    • Export Citation
  • Yamaura, Y., , and Tomita Y. , 2011: Spatiotemporal differences in the interannual variability of baiu frontal activity in June. Int. J. Climatol., 31, 5771.

    • Search Google Scholar
    • Export Citation
  • Yang, S., , Lau K.-M. , , and Kim K.-M. , 2002: Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J. Climate, 15, 306–325.

    • Search Google Scholar
    • Export Citation
  • Yim, S.-Y., , Jhun J.-G. , , Lu R. , , and Wang B. , 2010: Two distinct patterns of spring Eurasian snow cover anomaly and their impacts on the East Asia summer monsoon. J. Geophys. Res., 115, D22113, doi:10.1029/2010JD01399.

    • Search Google Scholar
    • Export Citation
  • Yun, K.-S., , Ren B. , , Ha K.-J. , , Chan J. C. L. , , and Jhun J.-G. , 2009: The 30–60-day oscillation in the East Asian summer monsoon and its time-dependent association with the ENSO. Tellus, 61A, 565578.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 35 35 10
PDF Downloads 16 16 7

The Development of a Statistical Forecast Model for Changma

View More View Less
  • 1 Division of Earth Environmental System, Department of Atmospheric Sciences, Pusan National University, Busan, South Korea
© Get Permissions
Restricted access

Abstract

Forecasting year-to-year variations in East Asian summer monsoon (EASM) precipitation is one of the most challenging tasks in climate prediction because the predictors are not sufficiently well known and the forecast skill of the numerical models is poor. In this paper, a statistical forecast model for changma (the Korean portion of the EASM system) precipitation is proposed that was constructed with three physically based predictors. A forward-stepwise regression was used to select the predictors that included sea surface temperature (SST) anomalies over the North Pacific, the North Atlantic, and the tropical Pacific Ocean. Seasonal predictions with this model showed high forecasting capabilities that had a Gerrity skill score of ~0.82. The dynamical processes associated with the predictors were examined prior to their use in the prediction scheme. All predictors tended to induce an anticyclonic anomaly to the east or southeast of Japan, which was responsible for transporting a large amount of moisture to the southern Korean Peninsula. The predictor in the North Pacific formed an SST front to the east of Japan during the summertime, which maintained a lower-tropospheric baroclinicity. The North Atlantic SST anomaly induced downstream wave propagation in the upper troposphere, developing anticyclonic activity east of Japan. Forcing from the tropical Pacific SST anomaly triggered a cyclonic anomaly over the South China Sea, which was maintained by atmosphere–ocean interactions and induced an anticyclonic anomaly via northward Rossby wave propagation. Overall, the model used for forecasting changma precipitation performed well (R = 0.85) and correctly predicted information for 16 out of 19 yr of observational data.

Corresponding author address: Dr. Kyong-Hwan Seo, Dept. of Atmospheric Sciences, Pusan National University, Jangjeon-dong, Busan 609-735, South Korea. E-mail: khseo@pusan.ac.kr

Abstract

Forecasting year-to-year variations in East Asian summer monsoon (EASM) precipitation is one of the most challenging tasks in climate prediction because the predictors are not sufficiently well known and the forecast skill of the numerical models is poor. In this paper, a statistical forecast model for changma (the Korean portion of the EASM system) precipitation is proposed that was constructed with three physically based predictors. A forward-stepwise regression was used to select the predictors that included sea surface temperature (SST) anomalies over the North Pacific, the North Atlantic, and the tropical Pacific Ocean. Seasonal predictions with this model showed high forecasting capabilities that had a Gerrity skill score of ~0.82. The dynamical processes associated with the predictors were examined prior to their use in the prediction scheme. All predictors tended to induce an anticyclonic anomaly to the east or southeast of Japan, which was responsible for transporting a large amount of moisture to the southern Korean Peninsula. The predictor in the North Pacific formed an SST front to the east of Japan during the summertime, which maintained a lower-tropospheric baroclinicity. The North Atlantic SST anomaly induced downstream wave propagation in the upper troposphere, developing anticyclonic activity east of Japan. Forcing from the tropical Pacific SST anomaly triggered a cyclonic anomaly over the South China Sea, which was maintained by atmosphere–ocean interactions and induced an anticyclonic anomaly via northward Rossby wave propagation. Overall, the model used for forecasting changma precipitation performed well (R = 0.85) and correctly predicted information for 16 out of 19 yr of observational data.

Corresponding author address: Dr. Kyong-Hwan Seo, Dept. of Atmospheric Sciences, Pusan National University, Jangjeon-dong, Busan 609-735, South Korea. E-mail: khseo@pusan.ac.kr
Save