• Adler, R. F., , and Fenn D. D. , 1981: Satellite-observed cloud-top height changes in tornadic thunderstorms. J. Appl. Meteor., 20, 13691375.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., , and Newton C. W. , 1986: Thunderstorms in the synoptic setting. Thunderstorm Morphology and Dynamics, E. Kessler, Ed., Thunderstorms: A Social, Scientific, and Technological Documentary, Vol. 2, University of Oklahoma Press, 75–112.

  • Bluestein, H. B., 2000: A tornadic supercell over elevated, complex terrain: The Divide, Colorado, storm of 12 July 1996. Mon. Wea. Rev., 128, 795809.

    • Search Google Scholar
    • Export Citation
  • Bosart, L. F., , Seimon A. , , LaPenta K. D. , , and Dickinson M. J. , 2006: Supercell tornadogenesis over complex terrain: The Great Barrington, Massachusetts, tornado on 29 May 1995. Wea. Forecasting, 21, 897922.

    • Search Google Scholar
    • Export Citation
  • Bourgeat, F.-E., 1890a: Note complémentaire sur le prolongement en Suisse de la tempête du 19 août. C. R. Acad. Sci., 111, p. 406.

  • Bourgeat, F.-E., 1890b: Premières observations sur le cyclone du 19 août dans le Jura. C. R. Acad. Sci., 111, 385389.

  • Brandes, E. A., 1978: Mesocyclone evolution and tornadogenesis: Some observations. Mon. Wea. Rev., 106, 9951011.

  • Braun, S. A., , and Monteverdi J. P. , 1991: An investigation of a mesocyclone-induced tornado occurrence in northern California. Wea. Forecasting, 6, 1331.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., , Doswell C. A. III, , and Wilhelmson R. B. , 1993: On the role of midtropospheric winds in the evolution and maintenance of low-level mesocyclones. Mon. Wea. Rev., 122, 126136.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1964: Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21, 634639.

    • Search Google Scholar
    • Export Citation
  • Broyles, C., , Dipasquale N. , , and Wynne R. , 2002: Synoptic and mesoscale patterns associated with violent tornadoes across separate geographical regions of the United States: Part 1—Surface characteristics. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 16.7a. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/webprogram/Paper32849.html.]

  • Burgess, D. W., , and Lemon L. R. , 1990: Severe thunderstorm detection by radar. Radar in Meteorology, D. Atlas, Ed., Amer. Meteor. Soc., 619–656.

  • Burgess, D. W., , and Magsig M. A. , 1998: Recent observations of tornado development at near range to WSR-88D radars. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 756759.

  • Burgess, D. W., , Donaldson R. J. , , and Desrochers P. R. , 1993: Tornado detection and warning by radar. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 203–221.

  • Burgess, D. W., , Magsig M. A. , , Wurman J. , , Dowell D. C. , , and Richardson Y. , 2002: Radar observations of the 3 May 1999 Oklahoma City tornado. Wea. Forecasting, 17, 456471.

    • Search Google Scholar
    • Export Citation
  • Byko, Z., , Markowski P. , , and Richardson Y. , 2009: Descending reflectivity cores in supercell thunderstorms observed by mobile radars and in a high-resolution numerical simulation. Wea. Forecasting, 24, 155186.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., , and Rutledge S. A. , 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103 (D12), 13 97914 000.

    • Search Google Scholar
    • Export Citation
  • Collier, C. G., , and Lilley R. B. E. , 1994: Forecasting thunderstorm initiation in north-west Europe using thermodynamic indices, satellite and radar data. Meteor. Appl., 1, 7584.

    • Search Google Scholar
    • Export Citation
  • Costa, S., , Mezzasalma P. , , Levizzani V. , , Alberoni P. P. , , and Nanni S. , 2001: Deep convection over northern Italy: Synoptic and thermodynamic analysis. Atmos. Res., 56, 7388.

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., 1984: Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci., 41, 29913006.

  • Davies-Jones, R., , Burgess D. , , and Foster M. , 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

  • Dessens, J., , and Snow J. T. , 1989: Tornadoes in France. Wea. Forecasting, 4, 110132.

  • Dessens, J., , and Snow J. T. , 1993: Comparative description of tornadoes in France and the United States. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 427–434.

  • Doswell, C. A., III, , and Burgess D. W. , (1993): Tornadoes and tornadic storms: A review of conceptual models. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 161–172.

  • Dotzek, N., 2003: An updated estimate of tornado occurrence in Europe. Atmos. Res., 67-68, 153161.

  • Dowell, D. C., , and Bluestein H. B. , 1997: The Arcadia, Oklahoma, storm of 17 May 1981: Analysis of a supercell during tornadogenesis. Mon. Wea. Rev., 125, 25622582.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., , Lazarus S. M. , , and Davies-Jones R. , 1993: The influence of helicity on numerically simulated convective storms. Mon. Wea. Rev., 121, 20052029.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1971: Proposed characterization of tornadoes and hurricanes by area and intensity. Satellite and Mesometeorology Research Project Rep. 91, University of Chicago, 42 pp.

  • Gallimore, R. G., , and Lettau H. H. , 1970: Topographic influence on tornado tracks and frequencies in Wisconsin and Arkansas. Trans. Wis. Acad. Sci. Arts Lett., 58, 101127.

    • Search Google Scholar
    • Export Citation
  • Gauthier, L., 1890: La trombe-cyclone du 19 août 1890. C. R. Acad. Sci., 111, 417421.

  • Giaiotti, D. B., , and Stel F. , 2007: A multiscale observational case study of an isolated tornadic supercell. Atmos. Res., 83, 152161.

    • Search Google Scholar
    • Export Citation
  • Grzych, M. L., , Lee B. D. , , and Finley C. A. , 2007: Thermodynamic analysis of supercell rear-flank downdrafts from Project ANSWERS. Mon. Wea. Rev., 135, 240246.

    • Search Google Scholar
    • Export Citation
  • Held, G., , Gomes A. M. , , Naccarato K. P. , , Pinto O. Jr., , Nascimento E. , , Correia A. A. , , and Marcelino I. P. V. O. , 2005: Analysis of tornado characteristics in the state of São Paulo for the improvement of an automatic alert system. Preprints, 32nd Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P3R.9. [Available online at https://ams.confex.com/ams/pdfpapers/96729.pdf.]

  • Hering, A. M., , Morel C. , , Galli G. , , Sénési S. , , Ambrosetti P. , , and Boscacci M. , 2004: Nowcasting thunderstorms in the Alpine region using a radar based adaptive thresholding scheme. Proc. Third European Conf. on Radar Meteorology, Visby, Sweden, Copernicus GmbH, 206–211.

  • Hering, A. M., , Sénési S. , , Ambrosetti P. , , and Bernard-Bouissières I. , 2005: Nowcasting thunderstorms in complex cases using radar data. Proc. Symp. on Nowcasting and Very Short Range Forecasting (WSN05), Toulouse, France, World Weather Research Programme, 2.14.

  • Hering, A. M., , Germann U. , , Boscacci M. , , and Senesi S. , 2006: Operational thunderstorm nowcasting in the Alpine region using 3D-radar severe weather parameters and lightning data. Proc. Fourth European Conf. on Radar Meteorology, Barcelona, Spain, CRAHI/UPC, 8.1. [Available online at www.crahi.upc.edu/ERAD2006/proceedingsMask/00122.pdf.]

  • Hernández, E., , Cana L. , , Diaz J. , , Garcia R. , , and Gimeno L. , 1998: Mesoscale convective complexes over the western Mediterranean area during 1990–1994. Meteor. Atmos. Phys., 68, 112.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , Smull B. F. , , and Dodge P. , 1990: Mesoscale organization of springtime rainstorms in Oklahoma. Mon. Wea. Rev., 118, 613654.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., , Schmid W. , , Fovell R. G. , , and Schiesser H. H. , 1993: Hailstorms in Switzerland: Left movers, right movers and false hooks. Mon. Wea. Rev., 121, 33453370.

    • Search Google Scholar
    • Export Citation
  • Huntrieser, H., , Schiesser H. H. , , Schmid W. , , and Waldvogel A. , 1997: Comparison of traditional and newly developed thunderstorm indices for Switzerland. Wea. Forecasting, 12, 108125.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., , and Doswell C. A. III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588611.

  • Jones, C. D., , and Macpherson B. , 1997: A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model. Meteor. Appl., 4, 269277.

    • Search Google Scholar
    • Export Citation
  • Klemp, J. B., , and Rotunno R. , 1983: A study of the tornadic region within a supercell thunderstorm. J. Atmos. Sci., 40, 359377.

  • Kocin, P. J., , Uccellini L. W. , , and Petersen R. A. , 1986: Rapid evolution of a jet streak circulation in a pre-convective environment. Meteor. Atmos. Phys., 35, 103138.

    • Search Google Scholar
    • Export Citation
  • Korotky, W. D., 1990: The Raleigh tornado of November 28, 1988: The evolution of a tornadic environment. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Amer. Meteor. Soc., 532537.

  • Lemon, L. R., , and Doswell C. A. III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., , Burgess D. W. , , and Brown R. A. , 1978: Tornadic storm airflow and morphology derived from single-Doppler radar measurements. Mon. Wea. Rev., 106, 4861.

    • Search Google Scholar
    • Export Citation
  • Leuenberger, D., , and Rossa A. , 2007: Revisiting the latent heat nudging scheme for the rainfall assimilation of a simulated convective storm. Meteor. Atmos. Phys., 98, 195215, doi:10.1007/s00703-007-0260-9.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., , and Burgess D. W. , 1994: Positive cloud-to-ground lightning in tornadic storms and hailstorms. Mon. Wea. Rev., 122, 16711697.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., , Burgess D. W. , , Mazur V. M. , , Rust W. D. , , Taylor W. L. , , and Johnson B. C. , 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221250.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104, 133142.

  • Markowski, P. M., , Straka J. M. , , and Rasmussen E. N. , 2002: Direct surface thermodynamic observations with the rear-flank downdrafts of nontornadic and tornadic supercells. Mon. Wea. Rev., 130, 16921721.

    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., , Straka J. M. , , and Rasmussen E. N. , 2003: Tornadogenesis resulting from transport of circulation by a downdraft: Idealized numerical simulations. J. Atmos. Sci., 60, 795823.

    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111, 887894.

  • McDonald, J., , and Mehta K. C. , 2006: A recommendation for an enhanced Fujita scale (EF-scale). Wind Science and Engineering Research Center, Texas Tech University, 111 pp. [Available online at http://www.depts.ttu.edu/nwi/Pubs/FScale/EFScale.pdf.]

  • McGinley, J., 1986: Nowcasting mesoscale phenomena. Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 657–688.

  • Melani, S., , Cattani E. , , Torricella F. , , and Levizzani V. , 2003: Characterization of plumes on top of a deep convective storm using AVHRR imagery and radiative transfer model simulations. Atmos. Res., 67–68, 485499.

    • Search Google Scholar
    • Export Citation
  • Moller, A. R., , Doswell C. A. III, , Foster M. P. , , and Woodall G. R. , 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327347.

    • Search Google Scholar
    • Export Citation
  • Morel, C., , and Senesi S. , 2002: A climatology of mesoscale convective systems over Europe using satellite infrared imagery. II: Characteristics of European mesoscale convective systems. Quart. J. Roy. Meteor. Soc., 128, 19731995.

    • Search Google Scholar
    • Export Citation
  • Morris, R. M., 1986: The Spanish Plume—Testing the forecaster’s nerve. Meteor. Mag., 115, 349357.

  • Nielsen-Gammon, J. W., 1995: Detection and interpretation of left‐moving severe thunderstorms using the WSR-88D: A case study. Wea. Forecasting, 10, 127140.

    • Search Google Scholar
    • Export Citation
  • Nuss, W. A., 1986: Observations of a mountain tornado. Mon. Wea. Rev., 114, 233237.

  • Perez, A. H., , Wicker L. J. , , and Orville R. E. , 1997: Characteristics of cloud-to-ground lightning associated with violent tornadoes. Wea. Forecasting, 12, 428437.

    • Search Google Scholar
    • Export Citation
  • Piaget, A., 1976: L'évolution orageuse au nord des Alpes et la tornade du Jura Vaudois du 26 août 1971. Publ. de l’Institut Suisse de Météorologie 35, Météo-Suisse, 102 pp.

  • Rasmussen, E. N., , Straka J. M. , , Gilmore M. S. , , and Davies-Jones R. , 2006: A survey of the occurrence of rear-flank descending reflectivity cores in a sample of supercells. Wea. Forecasting, 21, 923938.

    • Search Google Scholar
    • Export Citation
  • Rison, W., , Krehbiel P. , , Thomas R. J. , , and Hamlin T. , 2005: Three-dimensional lightning mapping observations as a compliment to radar observations of storms. Preprints, 32nd Conf. on Radar Meteorology/11th Conf. on Mesoscale Processes, Albuquerque, NM, Amer. Meteor. Soc., JP3J.23. [Available online at https://ams.confex.com/ams/pdfpapers/96951.pdf.]

  • Robert, C., , and Calas C. , 2004: Les tornades de saison froide en France. Meteorologie, 44, 2836.

  • Schiesser, H. H., , Houze R. A. Jr., , and Huntrieser H. , 1995: The mesoscale structure of severe precipitation systems in Switzerland. Mon. Wea. Rev., 123, 20702097.

    • Search Google Scholar
    • Export Citation
  • Schmid, W., , Schiesser H.-H. , , and Bauer-Messmer B. , 1997: Supercell storms in Switzerland: Case studies and implications for nowcasting severe winds with Doppler radar. Meteor. Appl., 4, 4967.

    • Search Google Scholar
    • Export Citation
  • Schraff, C., 1997: Mesoscale data assimilation and prediction of low stratus in the Alpine region. Meteor. Atmos. Phys., 64, 2150.

  • Seimon, A., 1993: Anomalous cloud-to-ground lightning in an F5-tornado-producing supercell thunderstorm on 28 August 1990. Bull. Amer. Meteor. Soc., 74, 189203.

    • Search Google Scholar
    • Export Citation
  • Setvák, M., , and Rabin R. M. , 2003: MODIS observations of deep convective cloud tops. Proc. Meteorological Satellite Conf., Weimar, Germany, EUMETSAT Publ. EUM P39, 381–388.

  • Setvák, M., , and Rabin R. M. , 2005: MSG observations of deep convective storms. Proc. Meteorological Satellite Conf., Dubrovnik, Croatia, EUMETSAT Publ. P46, 460–466.

  • Setvák, M., , Rabin R. M. , , and Wang P. K. , 2006: Contribution of the MODIS instrument to observations of deep convective storms and stratospheric moisture detection in GOES and MSG imagery. Atmos. Res., 83, 505518.

    • Search Google Scholar
    • Export Citation
  • Shabbott, C. J., , and Markowski P. M. , 2006: Surface in situ observations within the forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 14221441.

    • Search Google Scholar
    • Export Citation
  • Smith, S. B., , LaDue J. G. , , and MacGorman D. R. , 2000: The relationship between cloud-to-ground lightning polarity and surface equivalent potential temperature during three tornadic outbreaks. Mon. Wea. Rev., 128, 33203328.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., , Rust W. D. , , and Marshall T. C. , 1998: Electrical structure in thunderstorm convective regions: 3. Synthesis. J. Geophys. Res., 103 (D12), 14 09714 108.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., , Edwards R. , , and Hart J. A. , 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., , Mead C. M. , , and Edwards R. , 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., , and Mitchell E. D. , 1995: Characteristics of tornadic vortex signatures detected by WSR‐88D radar. Preprints, 27th Conf. on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., 211–212.

  • Trapp, R. J., , Stumpf G. J. , , and Manross K. L. , 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680687.

    • Search Google Scholar
    • Export Citation
  • Tripoli, G. J., , and Cotton W. R. , 1986: An intense, quasi-steady thunderstorm over mountainous terrain. Part IV: Three-dimensional numerical simulation. J. Atmos. Sci., 43, 894912.

    • Search Google Scholar
    • Export Citation
  • Uccellini, L. W., , and Johnson D. , 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682703.

    • Search Google Scholar
    • Export Citation
  • Waldvogel, A., , Federer B. , , and Grimm P. , 1979: Criteria for the detection of hail cells. J. Appl. Meteor., 18, 15211525.

  • Wegener, A., 1917: Wind- und Wasserhosen in Europa. Friedrich Vieweg und Sohn, 301 pp.

  • Wicker, L. J., , and Wilhelmson R. B. , 1995: Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm. J. Atmos. Sci., 52, 26752703.

    • Search Google Scholar
    • Export Citation
  • Wicker, L. J., , Kain J. , , Weiss S. , , and Bright D. , 2005: A brief description of the supercell detection index. NOAA/SPC, 10 pp. [Available online at www.spc.noaa.gov/exper/Spring_2005/SDI-docs.pdf‎.]

  • Xue, M., , Wang D. , , Gao J. , , Brewster K. , , and Droegemeier K. K. , 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139170.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 18 18 11
PDF Downloads 7 7 5

Analysis of the 18 July 2005 Tornadic Supercell over the Lake Geneva Region

View More View Less
  • 1 Federal Office of Meteorology and Climatology, MeteoSwiss, Geneva, Switzerland
© Get Permissions
Restricted access

Abstract

On the afternoon of 18 July 2005, a particularly intense supercell thunderstorm struck the Lake Geneva region of Switzerland. The storm initiated just southwest of Lyon, France, and tracked over 300 km toward the northeast before losing its supercell characteristics in the Swiss Alpine foothills around the town of Interlaken. During its 3-h lifespan, the storm’s forward translation averaged 60–80 km h−1. At the height of its severity, this supercell was responsible for hail the size of golf balls, a microburst with measured wind gusts of up to 160 km h−1, and two confirmed tornadoes. Miraculously, nobody was killed nor seriously injured. However, the material losses were considerable, including ravaged vineyards, damage to buildings and vehicles, and sections of forests that were completely destroyed. A postevent analysis was undertaken utilizing radar imagery/algorithms, satellite images, lightning and surface data, eyewitness reports, and a damage survey. This case provides a unique look at a supercell evolving within an Alpine environment and helps confirm prior research concerning certain storm features and signatures that have been observed in North American Great Plains supercells and elsewhere. Concerning tornadogenesis, this paper helps confirm via observations and simulations hypotheses proposed in several previous papers that low-level wind flow modified through channeling by mountains can periodically provide a locally favorable wind shear environment for tornadogenesis. For this particular case, inflow winds that channeled around mountain features appear to have been instrumental in the formation of the second tornado, since important topographical obstacles prevented any significant low-level gradient wind shear from operating on the eastern end of Lake Geneva, where this tornado occurred.

Corresponding author address: Lionel Peyraud, Federal Office of Meteorology and Climatology, MeteoSwiss, 7 bis, Av. de la Paix, 1211 Geneva 2, Switzerland. E-mail: lionel.peyraud@meteoswiss.ch

Abstract

On the afternoon of 18 July 2005, a particularly intense supercell thunderstorm struck the Lake Geneva region of Switzerland. The storm initiated just southwest of Lyon, France, and tracked over 300 km toward the northeast before losing its supercell characteristics in the Swiss Alpine foothills around the town of Interlaken. During its 3-h lifespan, the storm’s forward translation averaged 60–80 km h−1. At the height of its severity, this supercell was responsible for hail the size of golf balls, a microburst with measured wind gusts of up to 160 km h−1, and two confirmed tornadoes. Miraculously, nobody was killed nor seriously injured. However, the material losses were considerable, including ravaged vineyards, damage to buildings and vehicles, and sections of forests that were completely destroyed. A postevent analysis was undertaken utilizing radar imagery/algorithms, satellite images, lightning and surface data, eyewitness reports, and a damage survey. This case provides a unique look at a supercell evolving within an Alpine environment and helps confirm prior research concerning certain storm features and signatures that have been observed in North American Great Plains supercells and elsewhere. Concerning tornadogenesis, this paper helps confirm via observations and simulations hypotheses proposed in several previous papers that low-level wind flow modified through channeling by mountains can periodically provide a locally favorable wind shear environment for tornadogenesis. For this particular case, inflow winds that channeled around mountain features appear to have been instrumental in the formation of the second tornado, since important topographical obstacles prevented any significant low-level gradient wind shear from operating on the eastern end of Lake Geneva, where this tornado occurred.

Corresponding author address: Lionel Peyraud, Federal Office of Meteorology and Climatology, MeteoSwiss, 7 bis, Av. de la Paix, 1211 Geneva 2, Switzerland. E-mail: lionel.peyraud@meteoswiss.ch
Save