An Early Performance Evaluation of the NEXRAD Dual-Polarization Radar Rainfall Estimates for Urban Flood Applications

Luciana K. Cunha Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey, and Willis Research Network, London, United Kingdom

Search for other papers by Luciana K. Cunha in
Current site
Google Scholar
PubMed
Close
,
James A. Smith Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by James A. Smith in
Current site
Google Scholar
PubMed
Close
,
Mary Lynn Baeck Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Search for other papers by Mary Lynn Baeck in
Current site
Google Scholar
PubMed
Close
, and
Witold F. Krajewski IIHR—Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa

Search for other papers by Witold F. Krajewski in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Dual-polarization radars are expected to provide better rainfall estimates than single-polarization radars because of their ability to characterize hydrometeor type. The goal of this study is to evaluate single- and dual-polarization radar rainfall fields based on two overlapping radars (Kansas City, Missouri, and Topeka, Kansas) and a dense rain gauge network in Kansas City. The study area is located at different distances from the two radars (23–72 km for Kansas City and 104–157 km for Topeka), allowing for the investigation of radar range effects. The temporal and spatial scales of radar rainfall uncertainty based on three significant rainfall events are also examined. It is concluded that the improvements in rainfall estimation achieved by polarimetric radars are not consistent for all events or radars. The nature of the improvement depends fundamentally on range-dependent sampling of the vertical structure of the storms and hydrometeor types. While polarimetric algorithms reduce range effects, they are not able to completely resolve issues associated with range-dependent sampling. Radar rainfall error is demonstrated to decrease as temporal and spatial scales increase. However, errors in the estimation of total storm accumulations based on polarimetric radars remain significant (up to 25%) for scales of approximately 650 km2.

Corresponding author address: Luciana Cunha, Department of Civil and Environmental Engineering, Princeton University, E-208, Engineering Quad, Princeton, NJ 08544-0001. E-mail: lcunha@princeton.edu

Abstract

Dual-polarization radars are expected to provide better rainfall estimates than single-polarization radars because of their ability to characterize hydrometeor type. The goal of this study is to evaluate single- and dual-polarization radar rainfall fields based on two overlapping radars (Kansas City, Missouri, and Topeka, Kansas) and a dense rain gauge network in Kansas City. The study area is located at different distances from the two radars (23–72 km for Kansas City and 104–157 km for Topeka), allowing for the investigation of radar range effects. The temporal and spatial scales of radar rainfall uncertainty based on three significant rainfall events are also examined. It is concluded that the improvements in rainfall estimation achieved by polarimetric radars are not consistent for all events or radars. The nature of the improvement depends fundamentally on range-dependent sampling of the vertical structure of the storms and hydrometeor types. While polarimetric algorithms reduce range effects, they are not able to completely resolve issues associated with range-dependent sampling. Radar rainfall error is demonstrated to decrease as temporal and spatial scales increase. However, errors in the estimation of total storm accumulations based on polarimetric radars remain significant (up to 25%) for scales of approximately 650 km2.

Corresponding author address: Luciana Cunha, Department of Civil and Environmental Engineering, Princeton University, E-208, Engineering Quad, Princeton, NJ 08544-0001. E-mail: lcunha@princeton.edu
Save
  • Austin, P. M., 1987: Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev., 115, 10531070.

  • Baeck, M. L., and Smith J. A. , 1998: Estimation of heavy rainfall by the WSR-88D. Wea. Forecasting, 13, 416436.

  • Benjamin, S. G., 1989: An isentropic mesoα-scale analysis system and its sensitivity to aircraft and surface observations. Mon. Wea. Rev., 117, 15861603.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., and Ikeda K. , 2004: Freezing-level estimation with polarimetric radar. J. Appl. Meteor., 43, 15411553.

  • Carpenter, T. M., and Georgakakos K. P. , 2004: Impacts of parametric and radar rainfall uncertainty on the ensemble streamflow simulations of a distributed hydrologic model. J. Hydrol., 298, 202221, doi:10.1016/j.jhydrol.2004.03.036.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., Bringi V. N. , Balakrishnan N. , and Zrnić D. S. , 1990: Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase. J. Atmos. Oceanic Technol., 7, 621629.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., 2003: Local random errors in tipping-bucket rain gauge measurements. J. Atmos. Oceanic Technol., 20, 752759.

  • Ciach, G. J., and Krajewski W. F. , 1999: On the estimation of radar rainfall error variance. Adv. Water Resour., 22, 585595, doi:10.1016/S0309-1708(98)00043-8.

    • Search Google Scholar
    • Export Citation
  • Ciach, G. J., Krajewski W. F. , and Villarini G. , 2007: Product-error-driven uncertainty model for probabilistic quantitative precipitation estimation with NEXRAD data. J. Hydrometeor., 8, 13251347.

    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., Krajewski W. F. , and Mantilla R. , 2011: A framework for flood risk assessment under nonstationary conditions or in the absence of historical data. J. Flood Risk Manage., 4, 322.

    • Search Google Scholar
    • Export Citation
  • Cunha, L. K., Mandapaka P. V. , Krajewski W. F. , Mantilla R. , and Bradley A. A. , 2012: Impact of radar-rainfall error structure on estimated flood magnitude across scales: An investigation based on a parsimonious distributed hydrological model. Water Resour. Res., 48, W10515, doi:10.1029/2012WR012138.

    • Search Google Scholar
    • Export Citation
  • Einfalt, T., Arnbjerg-Nielsen K. , Golz C. , Jensen N.-E. , Quirmbach M. , Vaes G. , and Vieux B. , 2004: Towards a roadmap for use of radar rainfall data in urban drainage. J. Hydrol., 299, 186–202.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., Austin G. L. , and Tees D. , 1992: The accuracy of rainfall estimates by radar as a function of range. Quart. J. Roy. Meteor. Soc., 118, 435453.

    • Search Google Scholar
    • Export Citation
  • Fo, A. J. P., Crawford K. C. , and Hartzell C. L. , 1998: Improving WSR-88D hourly rainfall estimates. Wea. Forecasting, 13, 10161028.

  • Fulton, R. A., Breidenbach J. P. , Seo D.-J. , Miller D. A. , and O'Bannon T. , 1998: The WSR-88D rainfall algorithm. Wea. Forecasting, 13, 377395.

    • Search Google Scholar
    • Export Citation
  • Germann, U., Galli G. , Boscacci M. , and Bolliger M. , 2006: Radar precipitation measurement in a mountainous region. Quart. J. Roy. Meteor. Soc., 132, 16691692.

    • Search Google Scholar
    • Export Citation
  • Gesch, D., Evans G. , Mauck J. , Hutchinson J. , and Carswell W. J. Jr., 2009. The National Map—Elevation. U.S. Geological Survey Fact Sheet 2009-3053, 4 pp. [Available online at http://pubs.usgs.gov/fs/2009/3053/.]

  • Giangrande, S. E., and Ryzhkov A. V. , 2008: Estimation of rainfall based on the results of polarimetric echo classification. J. Appl. Meteor. Climatol., 47, 24452460.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., Krause J. M. , and Ryzhkov A. , 2008: Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteor. Climatol., 47, 13541364.

    • Search Google Scholar
    • Export Citation
  • Habib, E., Krajewski W. F. , and Kruger A. , 2001: Sampling errors of tipping-bucket rain gauge measurements. J. Hydrol. Eng., 6, 159166.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., and Ryzhkov A. V. , 2006: Validation of polarimetric hail detection. Wea. Forecasting, 21, 839850.

  • Istok, M. J., Fresch M. , Jing Z. , and Smith S. , 2009: WSR-88D dual polarization initial operational capabilities. Preprints, 25th Conf. on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., 15.5. [Available online at https://ams.confex.com/ams/pdfpapers/148927.pdf.]

  • Javier, J. R. N., Smith J. A. , Meierdiercks K. L. , Baeck M. L. , and Miller A. J. , 2007: Flash flood forecasting for small urban watersheds in the Baltimore metropolitan region. Wea. Forecasting, 22, 13311344.

    • Search Google Scholar
    • Export Citation
  • Knox, R., and Anagnostou E. N. , 2009: Scale interactions in radar rainfall estimation uncertainty. J. Hydrol. Eng., 14, 944953.

  • Krajewski, W. F., and Smith J. A. , 2002: Radar hydrology: Rainfall estimation. Adv. Water Resour., 25, 13871394, doi:10.1016/S0309-1708(02)00062-3.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., Seo B.-C. , Kruger A. , Domaszczynski P. , Villarini G. , and Gunyon C. , 2007: Hydro-NEXRAD radar-rainfall estimation algorithm development, testing and evaluation. Proc. World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat, Reston, VA, American Society of Civil Engineers, 9 pp., doi:10.1061/40927(243)279.

  • Krajewski, W. F., Kruger A. , Smith J. A. , Lawrence R. , and Gunyon C. , 2011a: Towards better utilization of NEXRAD data in hydrology: An overview of Hydro-NEXRAD. J. Hydroinf., 13, 255266.

    • Search Google Scholar
    • Export Citation
  • Krajewski, W. F., Vignal B. , Seo B.-C. , and Villarini G. , 2011b: Statistical model of the range-dependent error in radar-rainfall estimates due to the vertical profile of reflectivity. J. Hydrol., 402, 306316, doi:10.1016/j.jhydrol.2011.03.024.

    • Search Google Scholar
    • Export Citation
  • Lanza, L. G., and Stagi L. , 2008: Certified accuracy of rainfall data as a standard requirement in scientific investigations. Adv. Geosci., 16, 4348.

    • Search Google Scholar
    • Export Citation
  • Mandapaka, P. V., Krajewski W. F. , Ciach G. J. , Villarini G. , and Smith J. A. , 2009: Estimation of radar-rainfall error spatial correlation. Adv. Water Resour., 32, 10201030, doi:10.1016/j.advwatres.2008.08.014.

    • Search Google Scholar
    • Export Citation
  • Mantilla, R., and Gupta V. K. , 2005: A GIS numerical framework to study the process basis of scaling statistics on river networks. IEEE Geophys. Remote Sens. Lett., 2, 404408.

    • Search Google Scholar
    • Export Citation
  • Park, H. S., Ryzhkov A. V. , and Zrnić D. S. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748.

    • Search Google Scholar
    • Export Citation
  • Reed, S. M., and Maidment D. R. , 1999: Coordinate transformations for using NEXRAD data in GIS-based hydrologic modeling. J. Hydrol. Eng., 4, 174182.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Giangrande S. E. , Melnikov V. M. , and Schuur T. J. , 2005a: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., Giangrande S. E. , and Schuur T. J. , 2005b: Rainfall estimation with a polarimetric prototype of WSR-88D. J. Appl. Meteor., 44, 502515.

    • Search Google Scholar
    • Export Citation
  • Schröter, K., Llort X. , Velasco-Forero C. , Ostrowski M. , and Sempere-Torres D. , 2011: Implications of radar rainfall estimates uncertainty on distributed hydrological model predictions. Atmos. Res., 100, 237245.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., Park H.-S. , Ryzhkov A. V. , and Reeves H. D. , 2011: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol., 51, 763779.

    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., and Krajewski W. F. , 2010: Scale dependence of radar rainfall uncertainty: Initial evaluation of NEXRAD's new super-resolution data for hydrologic applications. J. Hydrometeor., 11, 11911198.

    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., and Krajewski W. F. , 2011: Investigation of the scale-dependent variability of radar-rainfall and rain gauge error correlation. Adv. Water Resour., 34, 152163, doi:10.1016/j.advwatres.2010.10.

    • Search Google Scholar
    • Export Citation
  • Seo, B.-C., Cunha L. K. , and Krajewski W. F. , 2013: Uncertainty in radar-rainfall composite and its impact on hydrologic prediction for the eastern Iowa flood of 2008. Water Resour. Res., 49, 27472764 , doi:10.1002/wrcr.20244.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Seo D.-J. , Baeck M. L. , and Hudlow M. D. , 1996: An intercomparison study of NEXRAD precipitation estimates. Water Resour. Res., 32, 2035–2045.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Baeck M. L. , Morrison J. E. , Sturdevant-Rees P. L. , Turner-Gillespie D. F. , and Bates P. D. , 2002: The regional hydrology of extreme floods in an urbanizing drainage basin. J. Hydrometeor., 3, 267282.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., Baeck M. L. , Meierdiercks K. L. , Miller A. J. , and Krajewski W. F. , 2007: Radar rainfall estimation for flash flood forecasting in small urban watersheds. Adv. Water Resour., 30, 20872097.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., and Smith J. A. , 2002: Use of three-dimensional reflectivity structure for automated detection and removal of nonprecipitating echoes in radar data. J. Atmos. Oceanic Technol., 19, 673685.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., Zrnić D. S. , and Ryzhkov A. V. , 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372.

    • Search Google Scholar
    • Export Citation
  • Szturc, J., Ośródka K. , Jurczyk A. , and Jelonek L. , 2008: Concept of dealing with uncertainty in radar-based data for hydrological purpose. Nat. Hazards Earth Syst. Sci., 8, 267279.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and Krajewski W. F. , 2009: Review of the different sources of uncertainty in single polarization radar-based estimates of rainfall. Surv. Geophys., 31, 107129.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., Krajewski W. F. , Ciach G. J. , and Zimmerman D. L. , 2009: Product-error-driven generator of probable rainfall conditioned on WSR-88D precipitation estimates. Water Resour. Res., 45, W01404, doi:10.1029/2008WR006946.

    • Search Google Scholar
    • Export Citation
  • Vulpiani, G., and Giangrande S. , 2009: Rainfall estimation from polarimetric S-band radar measurements: Validation of a neural network approach. J. Appl. Meteor. Climatol., 48, 20222036.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and Brandes E. A. , 1979: Radar measurement of rainfall—A summary. Bull. Amer. Meteor. Soc., 60, 10481058.

  • Wright, D. B., Smith J. A. , Villarini G. , and Baeck M. L. , 2012: The hydroclimatology of flash flooding in Atlanta. Water Resour. Res., 48, W04524, doi:10.1029/2011WR011371.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I. I., 1975: On radar-raingage comparison. J. Appl. Meteor., 14, 14301436.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1802 912 55
PDF Downloads 426 94 11