• Alexander, C., , and Wurman J. , 2005: The 30 May 1998 Spencer, South Dakota, storm. Part I: The structural evolution and environment of the supercell tornadoes. Mon. Wea. Rev., 133, 7296.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1964: A technique for maximizing details in numerical weather-map analysis. J. Appl. Meteor.,3, 396–409.

  • Bluestein, H. B., , Lee W.-C. , , Bell M. , , Weiss C. C. , , and Pazmany A. L. , 2003: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part II: Tornado-vortex structure. Mon. Wea. Rev., 131, 29682984.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., , Weiss C. C. , , and Pazmany A. L. , 2004: The vertical structure of a tornado: High-resolution, W-band, Doppler radar observations near Happy, Texas, on 5 May 2002. Mon. Wea. Rev., 132, 23252337.

    • Search Google Scholar
    • Export Citation
  • Church, C. R., , Snow J. T. , , Baker G. L. , , and Agee E. M. , 1979: Characteristics of tornado-like vortices as a function of swirl ratio: A laboratory investigation. J. Atmos. Sci., 36, 17551776.

    • Search Google Scholar
    • Export Citation
  • Davenport, A. G., , Grimond C. S. B. , , Oke T. R. , , and Wieringa J. , 2000: Estimating the roughness of cities and sheltered country. Preprints, 12th Conf. on Applied Climatology, Asheville, NC, Amer. Meteor. Soc., 96–99.

  • Davies-Jones, R. P., , Trapp R. J. , , and Bluestein H. B. , 2001: Tornadoes and tornadic storms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 167–221.

  • Dowell, D. C., , Alexander C. R. , , Wurman J. M. , , and Wicker L. J. , 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar-reflectivity patterns and wind-measurement errors. Mon. Wea. Rev., 123, 15011524.

    • Search Google Scholar
    • Export Citation
  • Edwards, R., , LaDue J. G. , , Ferree J. T. , , Scharfenberg K. , , Maier C. , , and Coulbourne W. L. , 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641653.

    • Search Google Scholar
    • Export Citation
  • Hoecker, W. H., 1960: Wind speed and air flow patterns in the Dallas tornado of April 2, 1957. Mon. Wea. Rev.,88, 167–180.

  • Kessler, E., 1986: Thunderstorm Morphology and Dynamics. Vol. 2, Thunderstorms: A Social, Scientific, and Technological Documentary, University of Oklahoma Press, 432 pp.

  • Koch, S. E., , desJardins M. , , and Kocin P. J. , 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor.,22, 1487–1503.

  • Kosiba, K. A., , and Wurman J. , 2010: The three-dimensional axisymmetric wind field structure of the Spencer, South Dakota, 1998, tornado. J. Atmos. Sci., 67, 30743083.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K. A., , Trapp R. J. , , and Wurman J. , 2008: An analysis of the axisymmetric three-dimensional low-level wind field in a tornado using mobile radar observations. Geophys. Res. Lett., 35, L05805, doi:10.1029/2007GL031851.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K. A., , Wurman J. , , Markowski P. , , Richardson Y. , , Robinson P. , , and Marquis J. , 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., , and Wurman J. , 2005: Diagnosed three-dimensional axisymmetric structure of the Mulhall tornado on 3 May 1999. J. Atmos. Sci., 62, 23732393.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., , Jou B. J.-D. , , Chang P.-L. , , and Deng S.-M. , 1999: Tropical cyclone kinematic structure retrieved from single-Doppler radar observations. Part I: Doppler velocity patterns and the GBVTD technique. Mon. Wea. Rev.,127, 2419–2439.

  • Lewellen, D. C., , and Lewellen W. S. , 2007: Near-surface intensification of tornado vortices. J. Atmos. Sci., 64, 21762194.

  • Lewellen, D. C., , Lewellen W. S. , , and Xia J. , 2000: The influence of a local swirl ratio on tornado intensification near the surface. J. Atmos. Sci., 57, 527544.

    • Search Google Scholar
    • Export Citation
  • Lewellen, D. C., , Gong B. , , and Lewellen W. S. , 2008: Effects of finescale debris on near-surface tornado dynamics. J. Atmos. Sci., 65, 32473262.

    • Search Google Scholar
    • Export Citation
  • Lewellen, W. S., 1976: Assessment of knowledge and implications for man. Proc. Symp. on Tornadoes, Lubbock, TX, Texas Tech University, 107–143.

  • Lewellen, W. S., 1993: Tornado vortex theory. The Tornado: Its Structure, Dynamics, Prediction and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 19–39.

  • Lewellen, W. S., , Lewellen D. C. , , and Sykes R. I. , 1997: Large-eddy simulation of a tornado's interaction with the surface. J. Atmos. Sci., 54, 581605.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., 2013: On the use of Doppler radar–derived wind fields to diagnose the secondary circulations of tornadoes. J. Atmos. Sci., 70, 11601171.

    • Search Google Scholar
    • Export Citation
  • Snow, J. T., 1982: A review of recent advances in tornado vortex dynamics. Rev. Geophys. Space Phys., 20, 953964.

  • Tanamachi, R. L., , Bluestein H. B. , , Lee W.-C. , , Bell M. , , and Pazmany A. , 2007: Ground-based velocity display (GBVTD) analysis of W-band Doppler radar data in a tornado near Stockton, Kansas, on 15 May 1999. Mon. Wea. Rev., 135, 783800.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., , Stauffer P. , , Lee W.-C. , , Atkins N. T. , , and Wurman J. , 2012: Finescale structure of the LaGrange, Wyoming, tornado during VORTEX2: GBVTD and photogrammetric analyses. Mon. Wea. Rev., 140, 29392958.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., 1998: Preliminary results and report of the ROTATE-98 tornado experiment. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 120–123.

  • Wurman, J., 2001: The DOW mobile multiple Doppler network. Preprints, 30th Int. Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., 95–97.

  • Wurman, J., 2008: Preliminary results and report of the ROTATE-2008 radar/in-situ/mobile mesonet experiment. Proc. 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 5.4. [Available online at https://ams.confex.com/ams/24SLS/webprogram/Paper142200.html.]

  • Wurman, J., , and Gill S. , 2000: Finescale radar observations of the Dimmitt, Texas, tornado. Mon. Wea. Rev., 128, 21352164.

  • Wurman, J., , and Randall M. , 2001: An inexpensive, mobile, rapid-scan radar. Preprints, 30th Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc., P3.4. [Available online at https://ams.confex.com/ams/pdfpapers/21577.pdf.]

  • Wurman, J., , and Kosiba K. , 2013: Finescale radar observations of tornado and mesocyclone structures. Wea. Forecasting, 28, 11571174.

  • Wurman, J., , Straka J. , , and Rasmussen E. , 1996: Fine-scale Doppler radar observation of tornadoes. Science, 272, 17741777.

  • Wurman, J., , Straka J. , , Rasmussen E. , , Randall M. , , and Zahrai A. , 1997: Design and deployment of a portable, pencil-beam, pulsed, 3-cm Doppler radar. J. Atmos. Oceanic Technol., 14, 15021512.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., , Alexander C. , , Robinson P. , , and Richardson Y. , 2007a: Low-level winds in tornadoes and potential catastrophic tornado impacts in urban areas. Bull. Amer. Meteor. Soc., 88, 3146.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., , Richardson Y. , , Alexander C. , , Weygandt S. , , and Zhang P. F. , 2007b: Dual-Doppler analysis of winds and vorticity budget terms near a tornado. Mon. Wea. Rev., 135, 23922405.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., , Dowell D. , , Richardson Y. , , Markowski P. , , Rasmussen E. , , Burgess D. , , Wicker L. , , and Bluestein H. B. , 2012: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., , Kosiba K. , , and Robinson P. , 2013a: In situ, Doppler radar, and video observations of the interior structure of a tornado and the wind–damage relationship. Bull. Amer. Meteor. Soc., 94, 835846.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 56 56 34
PDF Downloads 41 41 26

The Three-Dimensional Structure and Evolution of a Tornado Boundary Layer

View More View Less
  • 1 Center for Severe Weather Research, Boulder, Colorado
© Get Permissions
Restricted access

Abstract

The finescale three-dimensional structure and evolution of the near-surface boundary layer of a tornado (TBL) is mapped for the first time. The multibeam Rapid-Scan Doppler on Wheels (RSDOW) collected data at several vertical levels, as low as 4, 6, 10, 12, 14, and 17 m above ground level (AGL), contemporaneously at 7-s intervals for several minutes in a tornado near Russell, Kansas, on 25 May 2012. Additionally, a mobile mesonet anemometer measured winds at 3.5 m AGL in the core flow region. The radar, anemometer, and ground-based velocity-track display (GBVTD) analyses reveal the peak wind intensity is very near the surface at ~5 m AGL, about 15% higher than at 10 m AGL and 25% higher than at ~40 m AGL. GBVTD analyses resolve a downdraft within the radius of maximum winds (RMW), which decreased in magnitude when varying estimates for debris centrifuging are included. Much of the inflow (from −1 to −7 m s−1) is at or below 10–14 m AGL, much shallower than reported previously. Surface outflow precedes tornado dissipation. Comparisons between large-eddy simulation (LES) predictions of the corner flow swirl ratio Sc and observed tornado intensity changes are consistent.

Corresponding author address: Dr. Karen A. Kosiba, Center for Severe Weather Research, 1945 Vassar Circle, Boulder, CO 80305. E-mail: kakosiba@cswr.org

Abstract

The finescale three-dimensional structure and evolution of the near-surface boundary layer of a tornado (TBL) is mapped for the first time. The multibeam Rapid-Scan Doppler on Wheels (RSDOW) collected data at several vertical levels, as low as 4, 6, 10, 12, 14, and 17 m above ground level (AGL), contemporaneously at 7-s intervals for several minutes in a tornado near Russell, Kansas, on 25 May 2012. Additionally, a mobile mesonet anemometer measured winds at 3.5 m AGL in the core flow region. The radar, anemometer, and ground-based velocity-track display (GBVTD) analyses reveal the peak wind intensity is very near the surface at ~5 m AGL, about 15% higher than at 10 m AGL and 25% higher than at ~40 m AGL. GBVTD analyses resolve a downdraft within the radius of maximum winds (RMW), which decreased in magnitude when varying estimates for debris centrifuging are included. Much of the inflow (from −1 to −7 m s−1) is at or below 10–14 m AGL, much shallower than reported previously. Surface outflow precedes tornado dissipation. Comparisons between large-eddy simulation (LES) predictions of the corner flow swirl ratio Sc and observed tornado intensity changes are consistent.

Corresponding author address: Dr. Karen A. Kosiba, Center for Severe Weather Research, 1945 Vassar Circle, Boulder, CO 80305. E-mail: kakosiba@cswr.org
Save