The Advantages of a Mixed-Band Radar Network for Severe Weather Operations: A Case Study of 13 May 2009

Vivek N. Mahale School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Vivek N. Mahale in
Current site
Google Scholar
PubMed
Close
,
Jerald A. Brotzge Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Jerald A. Brotzge in
Current site
Google Scholar
PubMed
Close
, and
Howard B. Bluestein School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Howard B. Bluestein in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Adding a mix of X- or C-band radars to the current Weather Surveillance Radar-1988 Doppler (WSR-88D) network could address several limitations of the network, including improvements to spatial gaps in low-level coverage and temporal sampling of volume scans. These limitations can result in missing critical information in highly dynamic events, such as tornadoes and severe straight-line wind episodes. To evaluate the potential value of a mixed-band radar network for severe weather operations, a case study is examined using data from X- and S-band radars. On 13 May 2009, a thunderstorm complex associated with a cold front moved southward into southwest Oklahoma. A tornado rapidly developed from an embedded supercell within the complex. The life cycle of the tornado and subsequent wind event was sampled by the experimental Collaborative Adaptive Sensing of the Atmosphere (CASA) radar testbed of four X-band radars as well as two operational WSR-88Ds. In this study, the advantages of a mixed-band radar network are demonstrated through a chronological analysis of the event. The two radar networks provided enhanced overall situational awareness. Data from the WSR-88Ds provided 1) clear-air sensitivity, 2) a broad overview of the storm complex, 3) a large maximum unambiguous range, and 4) upper-level scans up to 19.5°. Data from the CASA radars provided 1) high-temporal, 1-min updates; 2) overlapping coverage for dual-Doppler analysis; and 3) dense low-level coverage. The combined system allowed for detailed, dual- and single-Doppler observations of a wind surge, a mesocyclone contraction, and a downburst.

Corresponding author address: Vivek N. Mahale, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Ste. 5900, Norman, OK 73072-7307. E-mail: vmahale@ou.edu

Abstract

Adding a mix of X- or C-band radars to the current Weather Surveillance Radar-1988 Doppler (WSR-88D) network could address several limitations of the network, including improvements to spatial gaps in low-level coverage and temporal sampling of volume scans. These limitations can result in missing critical information in highly dynamic events, such as tornadoes and severe straight-line wind episodes. To evaluate the potential value of a mixed-band radar network for severe weather operations, a case study is examined using data from X- and S-band radars. On 13 May 2009, a thunderstorm complex associated with a cold front moved southward into southwest Oklahoma. A tornado rapidly developed from an embedded supercell within the complex. The life cycle of the tornado and subsequent wind event was sampled by the experimental Collaborative Adaptive Sensing of the Atmosphere (CASA) radar testbed of four X-band radars as well as two operational WSR-88Ds. In this study, the advantages of a mixed-band radar network are demonstrated through a chronological analysis of the event. The two radar networks provided enhanced overall situational awareness. Data from the WSR-88Ds provided 1) clear-air sensitivity, 2) a broad overview of the storm complex, 3) a large maximum unambiguous range, and 4) upper-level scans up to 19.5°. Data from the CASA radars provided 1) high-temporal, 1-min updates; 2) overlapping coverage for dual-Doppler analysis; and 3) dense low-level coverage. The combined system allowed for detailed, dual- and single-Doppler observations of a wind surge, a mesocyclone contraction, and a downburst.

Corresponding author address: Vivek N. Mahale, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Ste. 5900, Norman, OK 73072-7307. E-mail: vmahale@ou.edu
Save
  • Atlas, D., and Banks H. C. , 1951: The interpretation of microwave reflections from rainfall. J. Meteor., 8, 271282.

  • Beck, J., and Bousquet O. , 2013: Using gap-filling radars in mountainous regions to complement a national radar network: Improvements in multiple-Doppler wind syntheses. J. Appl. Meteor. Climatol., 52, 18361850.

    • Search Google Scholar
    • Export Citation
  • Best, W. H., Jr., 1973: Radars over the hump—Recollections of the first weather radar network. Bull. Amer. Meteor. Soc., 54, 205208.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 1993: Observations and Theory of Weather Systems. Vol. II, Synoptic–Dynamic Meteorology in Midlatitudes, Oxford University Press, 594 pp.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2007: Advances in applications of the physics of fluids to severe weather systems. Rep. Prog. Phys., 70, 12591323.

  • Bluestein, H. B., Lee W.-C. , Bell M. , Weiss C. C. , and Pazmany A. L. , 2003: Mobile Doppler radar observations of a tornado in a supercell near Bassett, Nebraska, on 5 June 1999. Part II: Tornado-vortex structure. Mon. Wea. Rev., 131, 29682984.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., French M. M. , Tanamachi R. L. , Frasier S. , Hardwick K. , Junyent F. , and Pazmany A. , 2007: Close-range observations of tornadoes in supercells made with a dual-polarization, X-band, mobile Doppler radar. Mon. Wea. Rev., 135, 15221543.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., French M. M. , PopStefanija I. , Bluth R. T. , and Knorr J. B. , 2010: A mobile, phased-array Doppler radar for the study of severe convective storms. Bull. Amer. Meteor. Soc., 91, 579600.

    • Search Google Scholar
    • Export Citation
  • Brewster, K., Thomas K. W. , Gao J. , Brotzge J. , Xue M. , and Wang Y. , 2010: A nowcasting system using full physics numerical weather prediction initialized with CASA and NEXRAD radar data. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 9.4. [Available online at https://ams.confex.com/ams/pdfpapers/176053.pdf.]

  • Bringi, V. N., Keenan T. D. , and Chandrasekar V. , 2001: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 19061915.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J., Hondl K. , Phillips B. , Lemon L. , Bass E. J. , Rude D. , and Andra D. L. Jr., 2010: Evaluation of distributed collaborative adaptive sensing for the detection of low-level circulation and implications for severe weather warning operations. Wea. Forecasting, 25, 173189.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., Wood V. T. , and Sirmans D. , 2002: Improved tornado detection using simulated and actual WSR-88D data with enhanced resolution. J. Atmos. Oceanic Technol., 19, 17591771.

    • Search Google Scholar
    • Export Citation
  • Burgess, D. W., Wood V. T. , and Brown R. A. , 1982: Mesocyclone evolution statistics. Preprints, 12th Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 422424.

  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and Alberty R. L. , 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691687.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., Chrisman J. N. , Smith S. D. , Istok M. J. , Hall R. W. , and Saffle R. , 2013: WSR-88D radar projects: 2013 update. Preprints, 29th Conf. on Environmental Information Processing Technologies, Austin, TX, Amer. Meteor. Soc., 6B.1. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Paper221461.html.]

  • Davies-Jones, R. P., Burgess D. W. , and Foster M. , 1990: Test of helicity as a forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588592.

  • French, M. M., Bluestein H. B. , PopStefanija I. , Baldi C. A. , and Bluth R. T. , 2013: Reexamining the vertical development of tornadic vortex signatures in supercells. Mon. Wea. Rev., 141, 45764601.

    • Search Google Scholar
    • Export Citation
  • Gao, J., Brewster K. , Xue M. , Brotzge J. , Thomas K. , and Wang Y. , 2010: Real-time, low-level wind analysis including CASA and WSR-88D radar data using the ARPS 3DVAR. Preprints, 25th Conf. Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 7B.4. [Available online at https://ams.confex.com/ams/pdfpapers/176005.pdf.]

  • Gao, J., and Coauthors, 2013: A real-time weather-adaptive 3DVAR analysis system for severe weather detections and warnings. Wea. Forecasting, 28, 727–745.

    • Search Google Scholar
    • Export Citation
  • Glickman, T., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp.

  • Heinselman, P. L., and Torres S. M. , 2011: High-temporal-resolution capabilities of the National Weather Radar testbed phased-array radar. J. Appl. Meteor. Climatol., 50, 579593.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P. L., Priegnitz D. L. , Manross K. L. , Smith T. M. , and Adams R. W. , 2008: Rapid sampling of severe storms by the National Weather Radar testbed phased array radar. Wea. Forecasting, 23, 808824.

    • Search Google Scholar
    • Export Citation
  • Heinselman, P., LaDue D. , and Lazrus H. , 2012: Exploring impacts of rapid-scan radar data on NWS warning decisions. Wea. Forecasting, 27, 10311044.

    • Search Google Scholar
    • Export Citation
  • Isom, B., and Coauthors, 2013: The atmospheric imaging radar: Simultaneous volumetric observations using a phased array weather radar. J. Atmos. Oceanic Technol., 30, 655675.

    • Search Google Scholar
    • Export Citation
  • JDOP, 1979: Final report on the Joint Doppler Operational Project. NOAA Tech. Memo. ERL NSSL-86, Norman, OK, 84 pp.

  • Junyent, F., Chandrasekar V. , McLaughlin D. , Insanic E. , and Bharadwaj N. , 2010: The CASA Integrated Project 1 networked radar system. J. Atmos. Oceanic Technol., 27, 6178.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K., Wurman J. , Richardson Y. , Markowski P. , Robinson P. , and Marquis J. , 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and Ryzhkov A. V. , 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Ryzhkov A. V. , Melnikov V. M. , and Schuur T. J. , 2010: Rapid-scan superresolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon. Wea. Rev., 138, 37623786.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Smith T. , Stumpf G. J. , and Hondl K. , 2007: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., Finley C. A. , and Karstens C. D. , 2012: The Bowdle, South Dakota, cyclic tornadic supercell of 22 May 2010: Surface analysis of rear-flank downdraft evolution and multiple internal surges. Mon. Wea. Rev., 140, 34193441.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and Doswell C. A. III, 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., and Bringi V. N. , 2006: Improved rain attenuation correction algorithms for radar reflectivity and differential reflectivity with adaptation to drop shape model variation. Proc. 26th Int. Geoscience and Remote Sensing Symp., Denver, CO, Institute of Electrical and Electronics Engineers, 19101913.

  • Maddox, R. A., Zhang J. , Gourley J. J. , and Howard K. W. , 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927934.

    • Search Google Scholar
    • Export Citation
  • Maesaka, T., Maki M. , Iwanami K. , Misumi R. , and Shimizu S. , 2007: Real-time wind field retrieval system by using X-band radar network around Tokyo metropolitan area Preprints, 33rd Conf. on Radar Meteorology, Cairns, QLD, Australia, Amer. Meteor. Soc., P8B.11. [Available online at https://ams.confex.com/ams/pdfpapers/123537.pdf.]

  • Maki, M., and Coauthors, 2008: X-band polarimetric radar network in the Tokyo metropolitan area—X-NET. Proc. Fifth European Conf. on Radar Meteorology, Helsinki, Finland, ERAD, 3.7. [Available online at http://www.erad2010.org/pdf/POSTER/Thursday/02_Xband/11_ERAD2010_0354_extended.pdf.]

  • Markowski, P. A., 2002: Hook echoes and rear-flank downdrafts: A review. Mon. Wea. Rev., 130, 852876.

  • Marquis, J., Richardson Y. , Wurman J. , and Markowski P. M. , 2008: Single- and dual-Doppler analysis of a tornadic vortex and surrounding storm-scale flow in the Crowell, Texas, supercell of 30 April 2000. Mon. Wea. Rev., 136, 50175043.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Richardson Y. , Markowski P. , Dowell D. , and Wurman J. , 2012: Tornado maintenance investigated with high-resolution dual-Doppler and EnKF analysis. Mon. Wea. Rev., 140, 327.

    • Search Google Scholar
    • Export Citation
  • Mathworks, cited2012: Product documentation: pcolor. [Available online at http://www.mathworks.com/help/techdoc/ref/pcolor.html.]

  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817.

    • Search Google Scholar
    • Export Citation
  • Moisseev, D. N., and Chandrasekar V. , 2009: Polarimetric spectral filter for adaptive clutter and noise suppression. J. Atmos. Oceanic Technol., 26, 215228.

    • Search Google Scholar
    • Export Citation
  • Moisseev, D. N., Nguygen C. M. , and Chandrasekar V. , 2008: Clutter suppression for staggered PRT waveforms. J. Atmos. Oceanic Technol., 25, 22092218.

    • Search Google Scholar
    • Export Citation
  • National Weather Service Norman Forecast Office, cited 2013: Storm data and unusual weather phenomena - May 2009. [Available online at http://www.srh.noaa.gov/media/oun/stormdata/oun200905.pdf.]

  • NCAR, 1998: CEDRIC: Custom Editing and Display of Reduced Information in Cartesian Space. National Center for Atmospheric Research, 130 pp. [Available online at http://www.eol.ucar.edu/content/cedric-reference-manual.]

  • Office of the Federal Coordinator for Meteorological Services and Supporting Research, 2013: Doppler radar meteorological observations. Part A: System concepts, responsibilities, and procedures. Federal Meteorological Handbook No. 11, FCM-H11A-2013, 49 pp. [Available online at http://www.ofcm.gov/fmh11/fmh11.htm.]

  • Oye, D., and Case M. , 1995: REORDER: A program for gridding radar data installation and use manual for the Unix version. National Center for Atmospheric Research, 44 pp. [Available online at http://www.eol.ucar.edu/content/reorder-reference-manual.]

  • Palmer, R. D., and Coauthors, 2011: Observations of the 10 May 2010 tornado outbreak using OU-PRIME: Potential for new science with high-resolution polarimetric radar. Bull. Amer. Meteor. Soc., 92, 871891.

    • Search Google Scholar
    • Export Citation
  • Pazmany, A. L., Mead J. B. , Bluestein H. B. , Snyder J. C. , and Houser J. B. , 2013: A mobile rapid-scanning X-band polarimetric (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol.,30, 1398–1413.

  • Philips, B., Chandrasekar V. , Brotzge J. , Zink M. , Rodriguez H. , League C. , and Diaz W. , 2010: Performance of the CASA radar network during the May 13, 2009 Anadarko tornado. Preprints, 15th Symp. on Meteorological Observation Instrumentation, Atlanta, GA, Amer. Meteor. Soc., 9.3. [Available online at https://ams.confex.com/ams/pdfpapers/165864.pdf.]

  • Philips, B., Chandrasekar V. , Carr F. , Brotzge J. , Rees P. , League C. , and Bajaj A. , 2012: Dallas Fort Worth Urban Demonstration Network. Preprints, Second Conf. on Transition of Research to Operations: Successes, Plans, and Challenges, New Orleans, LA, Amer. Meteor. Soc., TJ25.5. [Available online at https://ams.confex.com/ams/92Annual/webprogram/Paper203251.html.]

  • ROC, cited 2013: NEXRAD radar locations. NOAA/Radar Operations Center. [Available online at http://www.roc.noaa.gov/wsr88d/maps.aspx.]

  • Ryzhkov, A. V., Schuur T. J. , Burgess D. W. , and Zrnić D. S. , 2005: Polarimetric tornado detection. J. Appl. Meteor., 44, 557570.

  • Shabbott, C. J., and Markowski P. M. , 2006: Surface in situ observations within the outflow of forward-flank downdrafts of supercell thunderstorms. Mon. Wea. Rev., 134, 14221441.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S., Weiss C. C. , Schroeder J. L. , Wicker L. J. , and Biggerstaff M. I. , 2011: Observations of the surface boundary structure within the 23 May 2007 Perryton, Texas, supercell. Mon. Wea. Rev., 139, 37303749.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., Bluestein H. B. , Zhang G. , and Frasier S. J. , 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., Bluestein H. B. , Venkatesh V. , and Frasier S. J. , 2013: Observations of polarimetric signatures in supercells by an X-band mobile Doppler radar. Mon. Wea. Rev., 141, 329.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., Bluestein H. , Houser J. , Frasier S. , and Hardwick K. , 2012: Mobile, X-band, polarimetric Doppler radar observations of the 4 May 2007 Greensburg, Kansas, tornadic supercell. Mon. Wea. Rev., 140, 21032125.

    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and Curtis C. D. , 2007: Initial implementation of super resolution data on the NEXRAD network. Preprints, 23rd Conf. on International Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, San Antonio, TX, Amer. Meteor. Soc., 5B.10. [Available online at https://ams.confex.com/ams/pdfpapers/116240.pdf.]

  • Wakimoto, R. M., and Bringi V. N. , 1988: Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project. Mon. Wea. Rev., 116, 15211539.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., Atkins N. T. , and Wurman J. , 2011: The LaGrange tornado during VORTEX2. Part I: Photogrammetry analysis of the tornado combined with single-Doppler radar data. Mon. Wea. Rev., 139, 22332258.

    • Search Google Scholar
    • Export Citation
  • Westrick, K. J., Mass C. F. , and Colle B. A. , 1999: The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bull. Amer. Meteor. Soc., 80, 22892298.

    • Search Google Scholar
    • Export Citation
  • Whiton, R. C., Smith P. L. , Bigler S. G. , Wilk K. E. , and Harbuck A. C. , 1998a: History of operational use of weather radar by U.S. weather services. Part I: The pre-NEXRAD era. Wea. Forecasting, 13, 219243.

    • Search Google Scholar
    • Export Citation
  • Whiton, R. C., Smith P. L. , Bigler S. G. , Wilk K. E. , and Harbuck A. C. , 1998b: History of operational use of weather radar by U.S. weather services. Part II: Development of operational Doppler weather radars. Wea. Forecasting, 13, 244252.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Kosiba K. A. , Markowski P. , Richardson Y. , Dowell D. , and Robinson P. , 2010: Finescale single- and dual-Doppler analysis of tornado intensification, maintenance, and dissipation in the Orleans, Nebraska, supercell. Mon. Wea. Rev., 138, 44394455.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., Dowell D. , Richardson Y. , Markowski P. , Rasmussen E. , Burgess D. , Wicker L. , and Bluestein H. B. , 2012: The Second Verification of the Origins of Rotation in Tornadoes Experiment: VORTEX2. Bull. Amer. Meteor. Soc., 93, 11471170.

    • Search Google Scholar
    • Export Citation
  • Zittel, W. D., and Jing Z. , 2012: Comparison of a 2-D velocity dealiasing algorithm to the legacy WSR-88D velocity dealiasing algorithm during Hurricane Irene. Preprints, 30th Conf. on Hurricanes, Ponte Vedra Beach, FL, Amer. Meteor. Soc., 7C.7. [Available online at https://ams.confex.com/ams/30Hurricane/webprogram/Paper205076.html.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 937 615 249
PDF Downloads 382 98 3