Abstract
Adding a mix of X- or C-band radars to the current Weather Surveillance Radar-1988 Doppler (WSR-88D) network could address several limitations of the network, including improvements to spatial gaps in low-level coverage and temporal sampling of volume scans. These limitations can result in missing critical information in highly dynamic events, such as tornadoes and severe straight-line wind episodes. To evaluate the potential value of a mixed-band radar network for severe weather operations, a case study is examined using data from X- and S-band radars. On 13 May 2009, a thunderstorm complex associated with a cold front moved southward into southwest Oklahoma. A tornado rapidly developed from an embedded supercell within the complex. The life cycle of the tornado and subsequent wind event was sampled by the experimental Collaborative Adaptive Sensing of the Atmosphere (CASA) radar testbed of four X-band radars as well as two operational WSR-88Ds. In this study, the advantages of a mixed-band radar network are demonstrated through a chronological analysis of the event. The two radar networks provided enhanced overall situational awareness. Data from the WSR-88Ds provided 1) clear-air sensitivity, 2) a broad overview of the storm complex, 3) a large maximum unambiguous range, and 4) upper-level scans up to 19.5°. Data from the CASA radars provided 1) high-temporal, 1-min updates; 2) overlapping coverage for dual-Doppler analysis; and 3) dense low-level coverage. The combined system allowed for detailed, dual- and single-Doppler observations of a wind surge, a mesocyclone contraction, and a downburst.