Skillful Wintertime North American Temperature Forecasts out to 4 Weeks Based on the State of ENSO and the MJO

Nathaniel C. Johnson International Pacific Research Center, School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, Hawaii, and Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Nathaniel C. Johnson in
Current site
Google Scholar
PubMed
Close
,
Dan C. Collins NOAA/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Dan C. Collins in
Current site
Google Scholar
PubMed
Close
,
Steven B. Feldstein Department of Meteorology, College of Earth and Mineral Sciences, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Steven B. Feldstein in
Current site
Google Scholar
PubMed
Close
,
Michelle L. L’Heureux NOAA/NCEP/Climate Prediction Center, College Park, Maryland

Search for other papers by Michelle L. L’Heureux in
Current site
Google Scholar
PubMed
Close
, and
Emily E. Riddle NOAA/NCEP/Climate Prediction Center, College Park, Maryland, and Wyle Information Systems, McLean, Virginia

Search for other papers by Emily E. Riddle in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Previous work has shown that the combined influence of El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO) significantly impacts the wintertime circulation over North America for lead times up to at least 4 weeks. These findings suggest that both the MJO and ENSO may prove beneficial for generating a seamless prediction link between short-range deterministic forecasts and longer-range seasonal forecasts. To test the feasibility of this link, wintertime (December–March) probabilistic 2-m temperature (T2m) forecasts over North America are generated solely on the basis of the linear trend and statistical relationships with the initial state of the MJO and ENSO. Overall, such forecasts exhibit substantial skill for some regions and some initial states of the MJO and ENSO out to a lead time of approximately 4 weeks. In addition, the primary ENSO T2m regions of influence are nearly orthogonal to those of the MJO, which suggests that the MJO and ENSO generally excite different patterns within the continuum of large-scale atmospheric teleconnections. The strong forecast skill scores for some regions and initial states confirm the promise that information from the MJO and ENSO may offer forecasts of opportunity in weeks 3 and 4, which extend beyond the current 2-week extended-range outlooks of the National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Center (CPC), and an intraseasonal link to longer-range probabilistic forecasts.

International Pacific Research Center Publication Number 1023 and School of Ocean and Earth Science and Technology Contribution Number 9029.

Corresponding author address: Nathaniel Johnson, IPRC, University of Hawai‘i at Mānoa, 401 POST Bldg., 1680 East–West Rd., Honolulu, HI 96822. E-mail: natj@hawaii.edu

Abstract

Previous work has shown that the combined influence of El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO) significantly impacts the wintertime circulation over North America for lead times up to at least 4 weeks. These findings suggest that both the MJO and ENSO may prove beneficial for generating a seamless prediction link between short-range deterministic forecasts and longer-range seasonal forecasts. To test the feasibility of this link, wintertime (December–March) probabilistic 2-m temperature (T2m) forecasts over North America are generated solely on the basis of the linear trend and statistical relationships with the initial state of the MJO and ENSO. Overall, such forecasts exhibit substantial skill for some regions and some initial states of the MJO and ENSO out to a lead time of approximately 4 weeks. In addition, the primary ENSO T2m regions of influence are nearly orthogonal to those of the MJO, which suggests that the MJO and ENSO generally excite different patterns within the continuum of large-scale atmospheric teleconnections. The strong forecast skill scores for some regions and initial states confirm the promise that information from the MJO and ENSO may offer forecasts of opportunity in weeks 3 and 4, which extend beyond the current 2-week extended-range outlooks of the National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Center (CPC), and an intraseasonal link to longer-range probabilistic forecasts.

International Pacific Research Center Publication Number 1023 and School of Ocean and Earth Science and Technology Contribution Number 9029.

Corresponding author address: Nathaniel Johnson, IPRC, University of Hawai‘i at Mānoa, 401 POST Bldg., 1680 East–West Rd., Honolulu, HI 96822. E-mail: natj@hawaii.edu
Save
  • Benedict, J. J., Lee S. , and Feldstein S. B. , 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61, 121144.

  • Branstator, G., 1985: Analysis of general circulation model sea-surface temperature anomaly simulations using a linear model. Part I: Forced solutions. J. Atmos. Sci., 42, 22252241.

    • Search Google Scholar
    • Export Citation
  • Brunet, G., and Coauthors, 2010: Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Amer. Meteor. Soc., 91, 13971406.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., 2012: Temperature trends in the NARCCAP regional climate models. J. Climate, 25, 39853991.

  • Cassou, C., 2008: Intraseasonal interaction between the Madden–Julian oscillation and North Atlantic Oscillation. Nature, 455, 523527, doi:10.1038/nature07286.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Feldstein, S. B., 2002: Fundamental mechanisms of the growth and decay of the PNA teleconnection pattern. Quart. J. Roy. Meteor. Soc., 128, 775796.

    • Search Google Scholar
    • Export Citation
  • Ferranti, L., Palmer T. N. , Molteni F. , and Klinker E. , 1990: Tropical–extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 21772199.

    • Search Google Scholar
    • Export Citation
  • Franzke, C., Feldstein S. B. , and Lee S. , 2011: Synoptic analysis of the Pacific–North American teleconnection pattern. Quart. J. Roy. Meteor. Soc., 137, 329346.

    • Search Google Scholar
    • Export Citation
  • Garfinkel, C. I., Feldstein S. B. , Waugh D. W. , Yoo C. , and Lee S. , 2012: Observed connection between stratospheric sudden warmings and the Madden–Julian oscillation. Geophys. Res. Lett., 39, L18807, doi:10.1029/2012GL053144.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden–Julian oscillation forecasts: A CLIVAR MJO Working Group project. Bull. Amer. Meteor. Soc., 91, 12471258.

    • Search Google Scholar
    • Export Citation
  • Halpert, M. S., and Ropelewski C. F. , 1992: Surface temperature patterns associated with the Southern Oscillation. J. Climate, 5, 577593.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Kiladis G. N. , 2014: Skill of the MJO and Northern Hemisphere blocking in GEFS medium-range reforecasts. Mon. Wea. Rev., in press.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., and Mo K. C. , 1997: Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. J. Climate, 10, 223244.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., 2013: The potential for skill across the range of the seamless weather–climate problem: A stimulus for our science. Quart. J. Roy. Meteor. Soc., 139, 573584.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B. J., and Karoly D. J. , 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 11791196.

    • Search Google Scholar
    • Export Citation
  • Hsu, H.-H., 1996: Global view of the intraseasonal oscillation during northern winter. J. Climate, 9, 23862406.

  • Hurrell, J. W., Kushnir Y. , Visbeck M. , and Ottersen G. , 2003: An overview of the North Atlantic Oscillation. The North Atlantic Oscillation: Climate Significance and Environmental Impact, Geophys. Monogr., Vol. 134, Amer. Geophys. Union, 1–35.

  • Jin, F., and Hoskins B. J. , 1995: The direct response to tropical heating in a baroclinic atmosphere. J. Atmos. Sci., 52, 307319.

  • Johnson, N. C., and Feldstein S. B. , 2010: The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J. Climate, 23, 851867.

    • Search Google Scholar
    • Export Citation
  • Jones, C., Carvalho L. M. V. , Gottschalck J. , and Higgins W. , 2011: The Madden–Julian oscillation and the relative value of deterministic forecasts of extreme precipitation in the contiguous United States. J. Climate, 24, 24212428.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Weickmann K. M. , 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 14071436.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., 2009: Finite samples and uncertainty estimates for skill measures for seasonal prediction. Mon. Wea. Rev., 137, 26222631.

  • Lee, S., Gong T. , Johnson N. , Feldstein S. B. , and Pollard D. , 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and Thompson D. W. J. , 2006: Observed relationships between the El Niño–Southern Oscillation and the extratropical zonal-mean circulation. J. Climate, 19, 276287.

    • Search Google Scholar
    • Export Citation
  • L’Heureux, M. L., and Higgins R. W. , 2008: Boreal winter links between the Madden–Julian oscillation and the Arctic Oscillation. J. Climate, 21, 30403050.

    • Search Google Scholar
    • Export Citation
  • Lin, H., and Brunet G. , 2009: The influence of the Madden–Julian oscillation on Canadian wintertime surface air temperature. Mon. Wea. Rev., 137, 22502262.

    • Search Google Scholar
    • Export Citation
  • Lin, H., Brunet G. , and Derome J. , 2009: An observed connection between the North Atlantic Oscillation and the Madden–Julian oscillation. J. Climate, 22, 364380.

    • Search Google Scholar
    • Export Citation
  • Lin, H., Brunet G. , and Mo R. , 2010: Impact of the Madden–Julian oscillation on wintertime precipitation in Canada. Mon. Wea. Rev., 138, 38223839.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and Julian P. R. , 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and Julian P. R. , 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., Hoskins B. J. , and Masutani M. , 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 19912011.

    • Search Google Scholar
    • Export Citation
  • Moon, J.-Y., Wang B. , and Ha K.-J. , 2011: ENSO regulation of MJO teleconnection. Climate Dyn., 37, 11331149.

  • Moore, R. W., Martius O. , and Spengler T. , 2010: The modulation of the subtropical and extratropical atmosphere in the Pacific basin in response to the Madden–Julian oscillation. Mon. Wea. Rev., 138, 27612778.

    • Search Google Scholar
    • Export Citation
  • Mori, M., and Watanabe M. , 2008: The growth and triggering mechanisms of the PNA: A MJO–PNA coherence. J. Meteor. Soc. Japan, 86, 213236.

    • Search Google Scholar
    • Export Citation
  • Newman, M., and Sardeshmukh P. D. , 2008: Tropical and stratospheric influences on extratropical short-term climate variability. J. Climate, 21, 43264347.

    • Search Google Scholar
    • Export Citation
  • Riddle, E. E., Stoner M. B. , Johnson N. C. , L’Heureux M. L. , Collins D. C. , and Feldstein S. B. , 2013: The impact of the MJO on clusters of wintertime circulation anomalies over the North American region. Climate Dyn., 40, 17491766.

    • Search Google Scholar
    • Export Citation
  • Rodney, M., Lin H. , and Derome J. , 2013: Subseasonal prediction of wintertime North American surface air temperature during strong MJO events. Mon. Wea. Rev., 141, 28972909.

    • Search Google Scholar
    • Export Citation
  • Ropelewski, C. F., and Halpert M. S. , 1987: Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Wea. Rev., 115, 16061626.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., and Gribble-Verhagen L. M. , 2010: Variations in the flow of the global atmosphere associated with a composite convectively coupled oceanic Kelvin wave. J. Climate, 23, 41924201.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., MacRitchie K. , Asuma J. , and Melino T. , 2010: Modulation of the global atmospheric circulation by combined activity in the Madden–Julian oscillation and the El Niño–Southern Oscillation during boreal winter. J. Climate, 23, 40454059.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate,in press.

  • Sardeshmukh, P. D., and Hoskins B. J. , 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 12281251.

    • Search Google Scholar
    • Export Citation
  • Schrage, J. M., Vincent D. G. , and Fink A. H. , 1999: Modulation of intraseasonal (25–70 day) processes by the superimposed ENSO cycle across the Pacific basin. Meteor. Atmos. Phys., 70, 1527.

    • Search Google Scholar
    • Export Citation
  • Schreck, C. J., Cordeira J. M. , and Margolin D. , 2013: Which MJO events affect North American temperatures? Mon. Wea. Rev., 141, 3840–3850.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., Wallace J. M. , and Branstator G. W. , 1983: Barotropic wave propagation and instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 13631392.

    • Search Google Scholar
    • Export Citation
  • Tam, C.-Y., and Lau N.-C. , 2005: The impact of ENSO on atmospheric intraseasonal variability as inferred from observations and GCM simulations. J. Climate, 18, 19021924.

    • Search Google Scholar
    • Export Citation
  • Ting, M., and Sardeshmukh P. D. , 1993: Factors determining the extratropical response to equatorial diabatic heating anomalies. J. Atmos. Sci., 50, 907918.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Caron J. M. , 2000: The Southern Oscillation revisited: Sea level pressures, surface temperatures, and precipitation. J. Climate, 13, 43584365.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., Branstator G. W. , Karoly D. , Kumar A. , Lau N.-G. , and Ropelewski C. , 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103 (C7), 14 29114 324.

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., and Bond N. A. , 2004: The Madden–Julian oscillation (MJO) and northern high latitude wintertime surface air temperatures. Geophys. Res. Lett., 31, L04104, doi:10.1029/2003GL018645.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., and Molteni F. , 2010: Simulation of the Madden–Julian oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and Hendon H. H. , 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences.Elsevier, 676 pp.

  • Yao, W., Lin H. , and Derome J. , 2011: Submonthly forecasting of winter surface air temperature in North America based on organized tropical convection. Atmos.–Ocean, 49, 5160.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., Feldstein S. , and Lee S. , 2011: The impacts of the Madden–Julian oscillation trend on the Arctic amplification of surface air temperature during the 1979–2008 boreal winter. Geophys. Res. Lett., 38, L24804, doi:10.1029/2011GL049881.

    • Search Google Scholar
    • Export Citation
  • Yoo, C., Lee S. , and Feldstein S. B. , 2012: Mechanisms of Arctic surface air temperature change in response to the Madden–Julian oscillation. J. Climate, 25, 57775790.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870.

  • Zhou, S., L’Heureux M. L. , Weaver S. , and Kumar A. , 2012: A composite study of the MJO influence on the surface air temperature and precipitation over the continental United States. Climate Dyn., 38, 14591471.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2078 992 243
PDF Downloads 966 232 21