Assessing the Predictability of Convection Initiation in the High Plains Using an Object-Based Approach

Brock J. Burghardt Atmospheric Science Group, Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Brock J. Burghardt in
Current site
Google Scholar
PubMed
Close
,
Clark Evans Atmospheric Science Group, Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Clark Evans in
Current site
Google Scholar
PubMed
Close
, and
Paul J. Roebber Atmospheric Science Group, Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

Search for other papers by Paul J. Roebber in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the short-range (0–12 h) predictability of convection initiation (CI) using the Advanced Research Weather Research and Forecasting (WRF) Model (ARW) with a horizontal grid spacing of 429 m. A unique object-based method is used to evaluate model performance for 25 cases of CI across the west-central high plains of the United States from the 2010 convective season. In the aggregate, there exists a high probability of detection but, due to the significant overproduction of CI events by the model, high false alarm and bias ratios that lead to modestly skillful forecasts. Model CI objects that are matched with observed CI objects show, on average, an early bias of about 3 min and distance errors of around 38 km. The operational utility and inherent biases of such high-resolution simulations are discussed.

Current affiliation: Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, Texas.

Corresponding author address: Dr. Clark Evans, Dept. of Mathematical Sciences, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201-0413. E-mail: evans36@uwm.edu

Abstract

This study investigates the short-range (0–12 h) predictability of convection initiation (CI) using the Advanced Research Weather Research and Forecasting (WRF) Model (ARW) with a horizontal grid spacing of 429 m. A unique object-based method is used to evaluate model performance for 25 cases of CI across the west-central high plains of the United States from the 2010 convective season. In the aggregate, there exists a high probability of detection but, due to the significant overproduction of CI events by the model, high false alarm and bias ratios that lead to modestly skillful forecasts. Model CI objects that are matched with observed CI objects show, on average, an early bias of about 3 min and distance errors of around 38 km. The operational utility and inherent biases of such high-resolution simulations are discussed.

Current affiliation: Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, Texas.

Corresponding author address: Dr. Clark Evans, Dept. of Mathematical Sciences, University of Wisconsin–Milwaukee, P.O. Box 413, Milwaukee, WI 53201-0413. E-mail: evans36@uwm.edu
Save
  • Abbs, D. J., and Pielke R. A. , 1986: Thermally forced surface flow and convergence patterns over northeast Colorado. Mon. Wea. Rev., 114, 22812296, doi:10.1175/1520-0493(1986)114<2281:TFSFAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adlerman, E. J., and Droegemeier K. K. , 2002: The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters. Mon. Wea. Rev., 130, 26712691, doi:10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blunden, J., Arndt D. S. , and Baringer M. O. , 2011: State of the climate in 2010. Bull. Amer. Meteor. Soc., 92 (6), S1S236, doi:10.1175/1520-0477-92.6.S1.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., Wyngaard J. C. , and Fritsch J. M. , 2003: Resolution requirements for the simulation of deep moist convection. Mon. Wea. Rev., 131, 23942416, doi:10.1175/1520-0493(2003)131<2394:RRFTSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cintineo, R. M., and Stensrud D. J. , 2013: On the predictability of supercell thunderstorm evolution. J. Atmos. Sci., 70, 19932011, doi:10.1175/JAS-D-12-0166.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., Xue M. , and Kong F. , 2010: Growth of spread in convection-allowing and convection-parameterizing ensembles. Wea. Forecasting, 25, 594612, doi:10.1175/2009WAF2222318.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2011: Probabilistic precipitation forecast skill as a function of ensemble size and spatial scale in a convection-allowing ensemble. Mon. Wea. Rev., 139, 14101418, doi:10.1175/2010MWR3624.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012a: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, doi:10.1175/BAMS-D-11-00040.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Kain J. S. , Marsh P. T. , Correia J. , Xue M. , and Kong F. , 2012b: Forecasting tornado pathlengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts. Wea. Forecasting, 27, 10901113, doi:10.1175/WAF-D-11-00147.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gao J. , Marsh P. T. , Smith T. , Kain J. S. , Correia J. Jr., Xue M. , and Kong F. , 2013: Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity. Wea. Forecasting, 28, 387407, doi:10.1175/WAF-D-12-00038.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., Elmore K. L. , Kain J. S. , Weiss S. J. , Xue M. , and Weisman M. L. , 2010: Evaluation of WRF model output for severe weather forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment. Wea. Forecasting, 25, 408427, doi:10.1175/2009WAF2222258.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., Correia J. Jr., Marsh P. T. , and Kong F. , 2013: Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations. Wea. Forecasting, 28, 842862, doi:10.1175/WAF-D-12-00103.1.

    • Search Google Scholar
    • Export Citation
  • Crook, A. N., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, doi:10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1997: Mesoscale anticyclonic circulations in the lee of the central Rocky Mountains. Mon. Wea. Rev., 125, 28382855, doi:10.1175/1520-0493(1997)125<2838:MACITL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Brown B. , and Bullock R. , 2006a: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, doi:10.1175/MWR3145.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Brown B. , and Bullock R. , 2006b: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 17851795, doi:10.1175/MWR3146.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Brown B. , Bullock R. , and Halley-Gotway J. , 2009: The Method for Object-based Diagnostic Evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC Spring Program. Wea. Forecasting, 24, 12521267, doi:10.1175/2009WAF2222241.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Done, J., Davis C. A. , and Weisman M. L. , 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecast (WRF) model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 1987: The distinction between large-scale and mesoscale contribution to severe convection: A case study example. Wea. Forecasting, 2, 316, doi:10.1175/1520-0434(1987)002<0003:TDBLSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 2004: Weather forecasting by humans—Heuristics and decision making. Wea. Forecasting, 19, 11151126, doi:10.1175/WAF-821.1.

    • Search Google Scholar
    • Export Citation
  • Duda, J. D., and Gallus W. A. Jr., 2013: The impact of large-scale forcing on skill of simulated convective initiation and upscale evolution with convection-allowing grid spacings in the WRF. Wea. Forecasting, 28, 9941018, doi:10.1175/WAF-D-13-00005.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarplay J. D. , 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fowle, M. A., and Roebber P. J. , 2003: Short-range (0–48 h) numerical prediction of convective occurrence, mode, and location. Wea. Forecasting, 18, 782794, doi:10.1175/1520-0434(2003)018<0782:SHNPOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fowler, T. L., and Coauthors, 2013: Recent enhancements to the Model Evaluation Tools (MET). 14th Annual WRF Users' Workshop, Boulder, CO, NCAR, 2.5. [Available online at http://www.mmm.ucar.edu/wrf/users/workshops/WS2013/short_abstracts/2.5.htm.]

  • Fujita, T. T., 1981: Tornadoes and downbursts in the context of generalized planetary scales. J. Atmos. Sci., 38, 15111534, doi:10.1175/1520-0469(1981)038<1511:TADITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gremillion, M. S., and Orville R. E. , 1999: Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D. Wea. Forecasting, 14, 640649, doi:10.1175/1520-0434(1999)014<0640:TCOCTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Noh Y. , and Dudhia J. , 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Houston, A. L., and Niyogi D. , 2007: The sensitivity of convective initiation to the lapse rate of the active cloud-bearing layer. Mon. Wea. Rev., 135, 30133032, doi:10.1175/MWR3449.1.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., Nielsen-Gammon J. W. , and Zhang F. , 2010: Evaluation of three planetary boundary layer schemes in the WRF model. J. Appl. Meteor. Climatol., 49, 18311844, doi:10.1175/2010JAMC2432.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2001: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso Model. NOAA/NWS/NCEP Office Note 437, 61 pp.

  • Johns, R. H., and Doswell C. A. , 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, doi:10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., and Weckwerth T. M. , 2003: Forcing and organization of convective systems. Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas, Meteor. Monogr., No. 52, Amer. Meteor. Soc., 75–103, doi:10.1175/0065-9401(2003)030<0075:FAOOCS>2.0.CO;2.

  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, doi:10.1175/BAMS-D-11-00264.1.

    • Search Google Scholar
    • Export Citation
  • Kang, S.-L., and Bryan G. H. , 2011: A large-eddy simulation study of moist convection initiation over heterogeneous surface fluxes. Mon. Wea. Rev., 139, 29012917, doi:10.1175/MWR-D-10-05037.1.

    • Search Google Scholar
    • Export Citation
  • Langston, C., Zhang J. , and Howard K. , 2007: Four-dimensional dynamic radar mosaic. J. Atmos. Oceanic Technol., 24, 776790, doi:10.1175/JTECH2001.1.

    • Search Google Scholar
    • Export Citation
  • Lee, B. D., Farley R. D. , and Hjelmfelt M. R. , 1991: A numerical case study of convection initiation along colliding convergence boundaries in northeast Colorado. J. Atmos. Sci., 48, 23502366,doi:10.1175/15200469(1991)048<2350:ANCSOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and Xue M. , 2008: Prediction of convective initiation and storm evolution on 12 June 2002 during IHOP_2002. Part I: Control simulation and sensitivity experiments. Mon. Wea. Rev., 136, 22612282, doi:10.1175/2007MWR2161.1.

    • Search Google Scholar
    • Export Citation
  • Markowski, P., Hannon C. , and Rasmussen E. , 2006: Observations of convection initiation “failure” from the 12 June 2002 IHOP deployment. Mon. Wea. Rev., 134, 375405, doi:10.1175/MWR3059.1.

    • Search Google Scholar
    • Export Citation
  • Mass, C. F., Ovens D. , Westrick K. , and Colle B. A. , 2002: Does increasing horizontal resolution produce more skillful forecasts? Bull. Amer. Meteor. Soc., 83, 407430, doi:10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Mueller, C. K., Wilson J. W. , and Crook N. A. , 1993: The utility of sounding and mesonet data to nowcast thunderstorm initiation. Wea. Forecasting, 8, 132146, doi:10.1175/1520-0434(1993)008<0132:TUOSAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1993: What is a good forecast? An essay on the nature of goodness in weather forecasting. Wea. Forecasting, 8, 281293, doi:10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., 2009: Visualizing multiple measures of forecast quality. Wea. Forecasting, 24, 601608, doi:10.1175/2008WAF2222159.1.

  • Roebber, P. J., Schultz D. M. , Colle B. A. , and Stensrud D. J. , 2004: Toward improved prediction: High-resolution and ensemble modeling systems in operations. Wea. Forecasting, 19, 936949, doi:10.1175/1520-0434(2004)019<0936:TIPHAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc.,91, 1015–1057, doi:10.1175/2010BAMS3001.1.

  • Schreiber-Abshire, W., and Rodi A. R. , 1991: Mesoscale convergence zone development in northeastern Colorado under southwest flow. Mon. Wea. Rev., 119, 29562977, doi:10.1175/1520-0493(1991)119<2956:MCZDIN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumann, M. R., and Roebber P. J. , 2010: The influence of upper-tropospheric potential vorticity on convective morphology. Mon. Wea. Rev., 138, 463474, doi:10.1175/2009MWR3091.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, doi:10.1175/2009MWR2924.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN–475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Stensrud, D. J., 2007: Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models.Cambridge University Press, 459 pp.

  • Stratman, D. R., Coniglio M. C. , Koch S. E. , and Xue M. , 2013: Use of multiple verification methods to evaluate forecasts of convection from hot- and cold-start convection-allowing models. Wea. Forecasting, 28, 119138, doi:10.1175/WAF-D-12-00022.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., Trier S. B. , Xiao Q. , Weisman M. L. , Wang H. , Ying Z. , Xu M. , and Zhang Y. , 2012: Sensitivity of 0–12-h warm-season precipitation forecasts over the central United States to model initialization. Wea. Forecasting, 27, 832855, doi:10.1175/WAF-D-11-00075.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Field P. R. , Rasmussen R. M. , and Hall W. D. , 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., Stensrud D. J. , Mullen S. L. , and Wicker L. J. , 2010: On the predictability of mesoscale convective systems: Three-dimensional simulations. Mon. Wea. Rev., 138, 863885, doi:10.1175/2009MWR2961.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 40174030, doi:10.1175/1520-0493(2000)129<4017:TEOSSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Parsons D. B. , 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, doi:10.1175/MWR3067.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., Horst T. W. , and Wilson J. W. , 1999: An observational study of the evolution of horizontal convective rolls. Mon. Wea. Rev., 127, 21602179, doi:10.1175/1520-0493(1999)127<2160:AOSOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., Murphey H. V. , Flamant C. , Goldstein J. , and Pettet C. R. , 2008: An observational study of convection initiation on 12 June 2002 during IHOP_2002. Mon. Wea. Rev., 136, 22832304, doi:10.1175/2007MWR2128.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Skamarock W. C. , and Klemp J. B. , 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, doi:10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Davis C. , Wang W. , Manning K. W. , and Klemp J. B. , 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, doi:10.1175/2007WAF2007005.1.

    • Search Google Scholar
    • Export Citation
  • Weiss, S., and Coauthors, 2011: Experimental Forecast Program Spring Experiment 2011: Program overview and operations plan. NOAA/NSSL/SPC, 62 pp. [Available online at http://hwt.nssl.noaa.gov/Spring_2011/Spring_Experiment_2011_ops_plan_13May_v5.pdf.]

  • Wilczak, J. M., and Christian T. W. , 1990: Case study of an orographically induced mesoscale vortex (Denver cyclone). Mon. Wea. Rev., 118, 10821102, doi:10.1175/1520-0493(1990)118<1082:CSOAOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in Atmospheric Sciences: An Introduction.Academic Press, 467 pp.

  • Wilson, J. W., and Roberts R. D. , 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347, doi:10.1175/MWR3069.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., Foote G. B. , Crook N. A. , Fankhauser J. C. , Wade C. G. , Tuttle J. D. , Mueller C. K. , and Krueger S. K. , 1992: The role of boundary-layer convergence zones and horizontal rolls in the initiation of thunderstorms: A case study. Mon. Wea. Rev., 120, 17851815, doi:10.1175/1520-0493(1992)120<1785:TROBLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Martin W. J. , 2006: A high-resolution modeling study of the 24 May 2002 dryline case during IHOP. Part I: Numerical simulation and general evolution of the dryline and convection. Mon. Wea. Rev., 134, 149171, doi:10.1175/MWR3071.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Snyder C. , and Rotunno R. , 2002: Mesoscale predictability of the “surprise” snowstorm of 24–25 January 2000. Mon. Wea. Rev., 130, 16171632, doi:10.1175/1520-0493(2002)130<1617:MPOTSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Snyder C. , and Rotunno R. , 2003: Effects of moist convection on mesoscale predictability. J. Atmos. Sci., 60, 11731185, doi:10.1175/1520-0469(2003)060<1173:EOMCOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., Howard K. , and Gourley J. J. , 2005: Constructing three-dimensional multiple-radar reflectivity mosaics: Examples of convective storms and stratiform rain echoes. J. Atmos. Oceanic Technol., 22, 3042, doi:10.1175/JTECH-1689.1.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and Rasmussen E. N. , 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13, 11061131, doi:10.1175/1520-0434(1998)013<1106:TIOMCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 783 378 31
PDF Downloads 392 59 0