• Belfort Instrument, 2005: Automated Weather Observing System (AWOS) system description. Baltimore, MD, 24 pp. [Available online at http://belfortinstrument.com/wp-content/uploads/2013/09/AWOS_SystemDescription.pdf.]

  • Bishop, C. H., and Toth Z. , 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 17481765, doi:10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chmielecki, R. M., and Raftery A. E. , 2011: Probabilistic visibility forecasting using Bayesian model averaging. Mon. Wea. Rev., 139, 16261636, doi:10.1175/2010MWR3516.1.

    • Search Google Scholar
    • Export Citation
  • Eckel, F. A., and Mass C. F. , 2005: Aspects of effective mesoscale, short-range ensemble forecasting. Wea. Forecasting, 20, 328350, doi:10.1175/WAF843.1.

    • Search Google Scholar
    • Export Citation
  • Federal Aviation Administration cited 2012: Pilot/Controller Glossary (P/CG). [Available online at http://www.faa.gov/air_traffic/publications/atpubs/PCG/pcg.pdf.]

  • Geiszler, D. A., Cook J. , Tag P. , Thompson W. , Bankert R. , and Schmidt J. , 2000: Evaluation of ceiling and visibility prediction: Preliminary results over California using the navy’s Couple Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Preprints, Ninth Conf. on Aviation, Range, and Aerospace Meteorology, Orlando, FL, Amer. Meteor. Soc., 334338.

  • Ghirardelli, J. E., and Glahn B. , 2010: The Meteorological Development Laboratory’s Aviation Weather Prediction System. Wea. Forecasting, 25, 10271051, doi:10.1175/2010WAF2222312.1.

    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and Lowry D. A. , 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, doi:10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Glickman, T., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp. [Available online at http://amsglossary.allenpress.com/glossary.]

  • Gultepe, I., and Milbrandt J. A. , 2007: Microphysical observations and mesoscale model simulation of a warm fog case during FRAM project. Pure Appl. Geophys., 164, 11611178, doi:10.1007/s00024-007-0212-9.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., Müller M. D. , and Boybeyi Z. , 2006: A new visibility parameterization for warm-fog applications in numerical weather prediction models. J. Appl. Meteor. Climatol., 45, 14691480, doi:10.1175/JAM2423.1.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2007: Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys., 164, 11211159, doi:10.1007/s00024-007-0211-x.

    • Search Google Scholar
    • Export Citation
  • Hacker, J., and Coauthors, 2011: The U.S. Air Force Weather Agency’s mesoscale ensemble: Scientific description and performance results. Tellus, 63A, 625641, doi:10.1111/j.1600-0870.2010.00497.x.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Colucci S. J. , 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125, 13121327, doi:10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P., and Coauthors, 2006: Development of FAA national ceiling and visibility products: Challenges, strategies and progress. Preprints, 12th Conf. on Aviation, Range, and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., P1.17. [Available online at https://ams.confex.com/ams/pdfpapers/103545.pdf.]

  • Hilliker, J. L., Akasapu G. , and Young G. S. , 2010: Assessing the short-term forecast capability of nonstandardized surface observations using the National Digital Forecast Database (NDFD). J. Appl. Meteor. Climatol., 49, 13971411, doi:10.1175/2010JAMC2137.1.

    • Search Google Scholar
    • Export Citation
  • Jacobs, A. J. M., and Maat N. , 2005: Numerical guidance methods for decision support in aviation meteorological forecasting. Wea. Forecasting, 20, 82100, doi:10.1175/WAF-827.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, N., Kotz S. , and Balakrishnan N. , 1994: Continuous Univariate Distributions. Vol. 1, John Wiley and Sons, 761 pp.

  • Kunkel, B. A., 1984: Parameterization of droplet terminal velocity and extinction coefficient in fog models. J. Climate Appl. Meteor., 23, 3441, doi:10.1175/1520-0450(1984)023<0034:PODTVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • National Climatic Data Center, cited2011: Online climate data directory. [Available online at http://lwf.ncdc.noaa.gov/oa/climate/climatedata.html.]

  • National Oceanic and Atmospheric Administration/DOD/FAA/U.S. Navy, 1998: Automated Surface Observing System, (ASOS) user’s guide. 67 pp. [Available online at http://www.nws.noaa.gov/asos/pdfs/aum-toc.pdf.]

  • Office of the Federal Coordinator for Meteorological Services and Supporting Research, 2005: Surface weather observations and reports. Federal Meteorological Handbook, No. 1, FCM-H1-2005, 104 pp. [Available online at http://www.ofcm.gov/fmh-1/fmh1.htm.]

  • Rogers, R. R., and Yau M. K. , 1989: A Short Course in Cloud Physics. Butterworth–Heinemann, 304 pp.

  • Ryerson, W., 2012: Toward improving short-range fog prediction in data-denied areas using the Air Force Weather Agency mesoscale ensemble. Ph.D. dissertation, Naval Postgraduate School, 225 pp. [Available online at http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA567345.]

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Stoelinga, M. T., and Warner T. T. , 1999: Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event. J. Appl. Meteor., 38, 385404, doi:10.1175/1520-0450(1999)038<0385:NMSMSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Toth Z. , Wobus R. , and Zhu Y. , 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, doi:10.1111/j.1600-0870.2007.00273.x.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 1995: Statistical Methods in the Atmospheric Sciences—An Introduction. International Geophysics Series, Vol. 59, Academic Press, 467 pp.

  • Zhou, B., 2011: Introduction to a new fog diagnostic scheme. NCEP Office Note 466, 43 pp.

  • Zhou, B., and Ferrier B. S. , 2008: Asymptotic analysis of equilibrium in radiation fog. J. Appl. Meteor. Climatol., 47, 17041722, doi:10.1175/2007JAMC1685.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., and Du J. , 2010: Fog prediction from a multimodel mesoscale ensemble prediction system. Wea. Forecasting, 25, 303322, doi:10.1175/2009WAF2222289.1.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., Du J. , and DiMego G. , 2010: Introduction to the NCEP Very Short Range Ensemble Forecast System (VSREF). Preprints, 14th Conf. on Aviation, Range, and Aerospace, Atlanta, GA, Amer. Meteor. Soc., J12.3. [Available online at https://ams.confex.com/ams/pdfpapers/162463.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 116 79 5
PDF Downloads 114 83 4

The Potential for Mesoscale Visibility Predictions with a Multimodel Ensemble

View More View Less
  • 1 Air Force Weather Agency, Offutt Air Force Base, Nebraska
  • | 2 Department of Meteorology, Naval Postgraduate School, Monterey, California
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This work examines the viability of producing short-range (<20 h) probabilistic fog predictions in remote locations, absent an observational history, using an uncalibrated 4-km, 10-member Weather Research and Forecasting Model (WRF) ensemble configured to closely match the Air Force Weather Agency Mesoscale Ensemble Forecast Suite. Three distinct sources of error in the final predictions are considered separately to facilitate a better understanding of the total error and appropriate mitigation strategies. These include initial condition error, parameterization of subgrid-scale processes, and error in the visibility parameterization used to convert NWP model output variables to visibility. The raw WRF predictions are generally not skillful in valley and coastal regions, where they produce a shortage of light fog predictions with visibilities of 1–7 mi (1.6–11.3 km) in favor of excessive forecasts of zero cloud water, corresponding to no fog. Initial condition error and visibility parameterization error are shown to play a relatively minor role compared to error in the parameterization of subgrid-scale processes. This deficiency is caused by a negative relative humidity bias, which results from a warm overnight bias. A second-order source of error arises from an inconsistent delineation of fog and haze in the NWP model compared to the verifying observations. Results show that under most conditions it is necessary to deviate from the perfect-prog assumption, and to introduce some method of statistical postprocessing to obtain skillful visibility predictions from the ensemble.

Corresponding author address: Joshua P. Hacker, Dept. of Meteorology, Naval Postgraduate School, 589 Dyer Rd., Monterey, CA 93943. E-mail: jphacker@nps.edu

Abstract

This work examines the viability of producing short-range (<20 h) probabilistic fog predictions in remote locations, absent an observational history, using an uncalibrated 4-km, 10-member Weather Research and Forecasting Model (WRF) ensemble configured to closely match the Air Force Weather Agency Mesoscale Ensemble Forecast Suite. Three distinct sources of error in the final predictions are considered separately to facilitate a better understanding of the total error and appropriate mitigation strategies. These include initial condition error, parameterization of subgrid-scale processes, and error in the visibility parameterization used to convert NWP model output variables to visibility. The raw WRF predictions are generally not skillful in valley and coastal regions, where they produce a shortage of light fog predictions with visibilities of 1–7 mi (1.6–11.3 km) in favor of excessive forecasts of zero cloud water, corresponding to no fog. Initial condition error and visibility parameterization error are shown to play a relatively minor role compared to error in the parameterization of subgrid-scale processes. This deficiency is caused by a negative relative humidity bias, which results from a warm overnight bias. A second-order source of error arises from an inconsistent delineation of fog and haze in the NWP model compared to the verifying observations. Results show that under most conditions it is necessary to deviate from the perfect-prog assumption, and to introduce some method of statistical postprocessing to obtain skillful visibility predictions from the ensemble.

Corresponding author address: Joshua P. Hacker, Dept. of Meteorology, Naval Postgraduate School, 589 Dyer Rd., Monterey, CA 93943. E-mail: jphacker@nps.edu
Save