• Amburn, S. A., and Wolf P. L. , 1997: VIL density as a hail indicator. Wea. Forecasting, 12, 473478, doi:10.1175/1520-0434(1997)012<0473:VDAAHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., Seliga T. A. , and Balaji V. , 1986: Remote sensing of hail with a dual linear polarization radar. J. Climate Appl. Meteor., 25, 14751484, doi:10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and Zrnić D. S. , 1990: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540, doi:10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., Vivekanandan J. , Tuttle J. D. , and Kessenger C. J. , 1995: A study of thunderstorm microphysics with multiparameter radar and aircraft observations. Mon. Wea. Rev., 123, 31293143, doi:10.1175/1520-0493(1995)123<3129:ASOTMW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., Weiss S. A. , and Calhoun K. M. , 2012: Continuous variability in thunderstorm primary electrification and an evaluation of inverted-polarity terminology. Atmos. Res., 135–136, 274–284, doi:10.1016/j.atmosres.2012.10.009.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., Petersen W. A. , and Rutledge S. A. , 2003: Evolution of cloud-to-ground lightning and storm structure in the Spencer, South Dakota, tornadic supercell of 30 May 1998. Mon. Wea. Rev., 131, 18111831, doi:10.1175//2566.1.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and Murphy M. J. , 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518, doi:10.1109/TEMC.2009.2023450.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., Petersen W. A. , Latham J. , Ellis S. , and Christian H. J. , 2008: The relationships between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res., 113, D15201, doi:1029/2007JD009700.

  • Foote, G. B., 1984: A study of hail growth using observed storm conditions. J. Climate Appl. Meteor., 23, 84101, doi:10.1175/1520-0450(1984)023<0084:ASOHGU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and Jameson A. R. , 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651374, doi:10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Higgins, R. W., Yao Y. , and Wang X. L. , 1997: Influence of the North American monsoon system on the U.S. summer precipitation regime. J. Climate, 10, 26002622, doi:10.1175/1520-0442(1997)010<2600:IOTNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., and Bringi V. N. , 2000: The effects of three-body scattering on differential reflectivity signatures. J. Atmos. Oceanic Technol., 17, 5161, doi:10.1175/1520-0426(2000)017<0051:TEOTBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1985: Microphysical interpretation of multiparameter radar measurements in rain. Part III: Interpretation and measurement of propagation differential phase shift between orthogonal linear polarizations. J. Atmos. Sci., 42, 607614, doi:10.1175/1520-0469(1985)042<0607:MIOMRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and Knight N. C. , 1970: The falling behavior of hailstones. J. Atmos. Sci., 27, 667671, doi:10.1175/1520-0469(1970)027<0667:LSOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krider, E. P., Noggle R. C. , and Uman M. , 1976: A gated, wideband magnetic direction finder for lightning return strokes. J. Appl. Meteor., 15, 301306, doi:10.1175/1520-0450(1976)015<0301:AGWMDF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and Ryzhkov A. V. , 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and Ryzhkov A. V. , 2012: The impact of size sorting on the polarimetric radar variables. J. Atmos. Sci., 69, 20422060, doi:10.1175/JAS-D-11-0125.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Ryzhkov A. V. , Melinkov V. M. , and Schuur T. J. , 2010: Rapid-scan, super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon. Wea. Rev., 138, 37623768, doi:10.1175/2010MWR3322.1.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., and Rutledge S. A. , 2002: Relationships between convective storm kinematics, precipitation, and lightning. Mon. Wea. Rev., 130, 24922506, doi:10.1175/1520-0493(2002)130<2492:RBCSKP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., 1998: The radar “three body scattering spike”: An operational large hail signature. Wea. Forecasting, 13, 327340, doi:10.1175/1520-0434(1998)013<0327:TRTBSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loney, M. L., Zrnić D. S. , Straka J. M. , and Ryzhkov A. V. , 2002: Enhanced polarimetric signatures above the melting level in a supercell thunderstorm. J. Appl. Meteor., 41, 11791194, doi:10.1175/1520-0450(2002)041<1179:EPRSAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Burgess D. W. , 1994: Positive cloud-to-ground lightning in tornadic storms and hailstorms. Mon. Wea. Rev., 122, 16711697, doi:10.1175/1520-0493(1994)122<1671:PCTGLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., Rust W. D. , Krehbiel P. , Rison W. , and Bruning E. , 2005: The electrical structure of two supercell storms during STEPS. Mon. Wea. Rev., 133, 25832607, doi:10.1175/MWR2994.1.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and Coauthors, 2008: TELEX: The Thunderstorm Electrification and Lightning Experiment. Bull. Amer. Meteor. Soc., 89, 9971010, doi:10.1175/2007BAMS2352.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., Cifelli R. , and Gochis D. , 2013: Measurements of heavy convective rainfall in the presence of hail in flood-prone areas using an X-band polarimetric radar. J. Appl. Meteor. Climatol., 52, 395407, doi:10.1175/JAMC-D-12-052.1.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., Tuttle J. D. , and Foote G. B. , 1990: Precipitation production in a large Montana hailstorm: Airflow and particle growth trajectories. J. Atmos. Sci., 47, 16191646, doi:10.1175/1520-0469(1990)047<1619:PPIALM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., and Vaughn R. L. , 1979: An economical procedure for Cartesian interpolation and display of reflectivity factor in three dimensional space. J. Appl. Meteor., 18, 661670, doi:10.1175/1520-0450(1979)018<0661:AEPFCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., Miller L. J. , Vaughan R. L. , and Frank H. W. , 1986: On the merger of mesoscale data sets into a common Cartesian format for efficient and systematic analysis. J. Atmos. Oceanic Technol., 3, 143161, doi:10.1175/1520-0426(1986)003<0143:TMOMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 19651983, doi:10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Picca, J., and Ryzhkov A. , 2012: A dual-wavelength polarimetric analysis of the 16 May 2010 Oklahoma City extreme hailstorm. Mon. Wea. Rev., 140, 13851403, doi:10.1175/MWR-D-11-00112.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and Blanchard D. O. , 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., and Heymsfield A. J. , 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, doi:10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., Levizzani V. , and Pruppacher H. R. , 1984: A wind tunnel and theoretical study on the melting behavior of atmospheric ice particles: III. Experiment and theory for spherical ice particles of radius >500 μm. J. Atmos. Sci., 41, 381388, doi:10.1175/1520-0469(1984)041<0381:AWTATS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reap, R. M., and MacGorman D. R. , 1989: Cloud-to-ground lightning: Climatological characteristics and relationships to model fields, radar observations, and severe local storms. Mon. Wea. Rev., 117, 518535, doi:10.1175/1520-0493(1989)117<0518:CTGLCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and Klemp J. B. , 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136151, doi:10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and Fuelberg H. E. , 2010: Pre- and postupgrade distributions of NLDN reported cloud-to-ground lightning characteristics in the contiguous United States. Mon. Wea. Rev., 138, 36233633, doi:10.1175/2010MWR3283.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., Kumjian M. , Ganson S. , and Khain A. , 2013: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, doi:10.1175/JAMC-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., 1993: A review of thunderstorm electrification processes. J. Appl. Meteor., 32, 642655, doi:10.1175/1520-0450(1993)032<0642:AROTEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., 1994: Observations of high ground flash densities of positive lightning in summertime thunderstorms. Mon. Wea. Rev., 122, 17401750, doi:10.1175/1520-0493(1994)122<1740:OOHGFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., Rust W. D. , and Marshall T. C. , 1998: Electrical structure in thunderstorm convective regions: 3. Synthesis. J. Geophys. Res., 103, 14 09714 108, doi:10.1029/97JD03545.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., Miller L. J. , Weins K. C. , and Rutledge S. A. , 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 41274150, doi:10.1175/JAS3585.1.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., Rutledge S. A. , and Tessendorf S. A. , 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, doi:10.1175/JAS3615.1.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., Zhang R. , and Rydcok J. , 1991: Mixed-phase microphysics and cloud electrification. J. Atmos. Sci., 48, 21952203, doi:10.1175/1520-0469(1991)048<2195:MPMACE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and Reum D. , 1988: The flare echo: Reflectivity and velocity signature. J. Atmos. Oceanic Technol., 5, 197205, doi:10.1175/1520-0426(1988)005<0197:TFERAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., Zhang G. , Melnikov V. , and Andric J. , 2010: Three-body scattering and hail size. J. Appl. Meteor. Climatol., 49, 687700, doi:10.1175/2009JAMC2300.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 62 28 1
PDF Downloads 47 20 0

Observations of the 14 July 2011 Fort Collins Hailstorm: Implications for WSR-88D-Based Hail Detection and Warnings

View More View Less
  • 1 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado
  • | 2 NOAA/National Weather Service Forecast Office, Denver/Boulder, Denver, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The issuance of timely warnings for the occurrence of severe-class hail (hailstone diameters of 2.5 cm or larger) remains an ongoing challenge for operational forecasters. This study examines the application of two remotely sensed data sources between 0100 and 0400 UTC 14 July 2011 when pulse-type severe thunderstorms occurred in the jurisdiction of the Denver/Boulder National Weather Service (NWS) Forecast Office in Colorado. First, a developing hailstorm was jointly observed by the dual-polarization Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) research radar and by the operational, single-polarization NWS radar at Denver/Front Range (KFTG). During the time period leading up to the issuance of the initial severe thunderstorm warning, the dual-polarization radar data near the 0 °C altitude contained a positive differential reflectivity ZDR column (indicating a strong updraft lofting supercooled raindrops above the freezing level). Correlation coefficient ρHV reductions to ~0.93, probably due to the presence of growing hailstones, were observed above the freezing level in portions of the developing >55-dBZ echo core. Second, data from the National Lightning Detection Network (NLDN), including the locations and polarity of cloud-to-ground (CG) discharges produced by several of the evening’s storms, were processed. Some association was found between the prevalence of positive CGs and storms that produced severe hail. The analyses indicate that the use of the dual-polarization data provided by the upgraded Weather Surveillance Radar-1988 Doppler (WSR-88D), in combination with the NLDN data stream, can assist operational forecasters in the real-time identification of thunderstorms that pose a severe hail threat.

Corresponding author address: Patrick C. Kennedy, CSU-CHILL Radar, 30750 Weld County Road 45, Greeley, CO 80631. E-mail: patrick.kennedy@colostate.edu

Abstract

The issuance of timely warnings for the occurrence of severe-class hail (hailstone diameters of 2.5 cm or larger) remains an ongoing challenge for operational forecasters. This study examines the application of two remotely sensed data sources between 0100 and 0400 UTC 14 July 2011 when pulse-type severe thunderstorms occurred in the jurisdiction of the Denver/Boulder National Weather Service (NWS) Forecast Office in Colorado. First, a developing hailstorm was jointly observed by the dual-polarization Colorado State University–University of Chicago–Illinois State Water Survey (CSU–CHILL) research radar and by the operational, single-polarization NWS radar at Denver/Front Range (KFTG). During the time period leading up to the issuance of the initial severe thunderstorm warning, the dual-polarization radar data near the 0 °C altitude contained a positive differential reflectivity ZDR column (indicating a strong updraft lofting supercooled raindrops above the freezing level). Correlation coefficient ρHV reductions to ~0.93, probably due to the presence of growing hailstones, were observed above the freezing level in portions of the developing >55-dBZ echo core. Second, data from the National Lightning Detection Network (NLDN), including the locations and polarity of cloud-to-ground (CG) discharges produced by several of the evening’s storms, were processed. Some association was found between the prevalence of positive CGs and storms that produced severe hail. The analyses indicate that the use of the dual-polarization data provided by the upgraded Weather Surveillance Radar-1988 Doppler (WSR-88D), in combination with the NLDN data stream, can assist operational forecasters in the real-time identification of thunderstorms that pose a severe hail threat.

Corresponding author address: Patrick C. Kennedy, CSU-CHILL Radar, 30750 Weld County Road 45, Greeley, CO 80631. E-mail: patrick.kennedy@colostate.edu
Save