• Accadia, C., Mariani S. , Casaioli M. , Lavagnini A. , and Speranza A. , 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918932, doi:10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adams-Selin, R. D., van den Heever S. C. , and Johnson R. H. , 2013: Sensitivity of bow-echo simulation to microphysical parameterizations. Wea. Forecasting, 28, 11881209, doi:10.1175/WAF-D-12-00108.1.

    • Search Google Scholar
    • Export Citation
  • Ahijevych, D. A., Davis C. A. , Carbone R. E. , and Tuttle J. D. , 2004: Initiation of precipitation episodes relative to elevated terrain. J. Atmos. Sci., 61, 27632769, doi:10.1175/JAS3307.1.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E., and Mitchell K. E. , 1997: The NCEP hourly multisensory U.S. precipitation analysis for operations and GCIP research. Preprints, 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 5455.

  • Bryan, G. H., and Morrison H. , 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Bullock, R., 2011: Development and implementation of MODE time domain object-based verification. Preprints, 24th Conf. on Weather and Forecasting/20th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 96. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper182677.html.]

  • Carbone, R. E., Tuttle J. D. , Ahijevych D. A. , and Trier S. B. , 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056, doi:10.1175/1520-0469(2002)059<2033:IOPAWW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Casati, B., and Coauthors, 2008: Forecast verification: Current status and future directions. Meteor. Appl., 15, 318, doi:10.1002/met.52.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chou, M.-D., and Suarez M. J. , 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech. Memo. 104606, Vol. 3, 85 pp.

  • Clark, A. J., Gallus W. A. Jr., Xue M. , and Kong F. , 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, doi:10.1175/2009WAF2222222.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., and Weisman M. L. , 2010: Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF model simulations and the operational NAM. Wea. Forecasting, 25, 14951509, doi:10.1175/2010WAF2222404.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012a: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, doi:10.1175/BAMS-D-11-00040.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Kain J. S. , Marsh P. T. , Correia J. Jr., Xue M. , and Kong F. , 2012b: Forecasting tornado pathlengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts. Wea. Forecasting, 27, 10901113, doi:10.1175/WAF-D-11-00147.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gao J. , Marsh P. T. , Smith T. , Kain J. S. , Correia J. Jr., Xue M. , and Kong F. , 2013: Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity. Wea. Forecasting, 28, 387–407, doi:10.1175/WAF-D-12-00038.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Brown B. , and Bullock R. , 2006a: Object-based verification of precipitation forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, doi:10.1175/MWR3145.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Brown B. , and Bullock R. , 2006b: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 17851795, doi:10.1175/MWR3146.1.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Brown B. , Bullock R. , and Halley-Gotway J. , 2009: The Method for Object-Based Diagnostic Evaluation (MODE) applied to numerical forecasts from the 2005 NSSL/SPC Spring Program. Wea. Forecasting, 24, 12521267, doi:10.1175/2009WAF2222241.1.

    • Search Google Scholar
    • Export Citation
  • Dawson, D. T., II, Xue M. , Milbrandt J. A. , and Yau M. K. , 2010: Comparison of evaporation and cold pool development between single-moment and multimoment bulk microphysics schemes in idealized simulations of tornadic thunderstorms. Mon. Wea. Rev., 138, 11521171, doi:10.1175/2009MWR2956.1.

    • Search Google Scholar
    • Export Citation
  • Duda, J. D., and Gallus W. A. Jr., 2013: The impact of large-scale forcing on skill of simulated convective initiation and upscale evolution with convection-allowing grid-spacings in the WRF. Wea. Forecasting, 28, 994–1018, doi:10.1175/WAF-D-13-00005.1.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and McBride J. L. , 2000: Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol., 239, 179202, doi:10.1016/S0022-1694(00)00343-7.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., and Gallus W. A. Jr., 2009: Toward better understanding of the contiguous rain area (CRA) method for spatial forecast verification. Wea. Forecasting, 24, 14011415, doi:10.1175/2009WAF2222252.1.

    • Search Google Scholar
    • Export Citation
  • Gao, J., Xue M. , Brewster K. , and Droegemeier K. K. , 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469, doi:10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and Lim J.-O. J. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hu, M., and Xue M. , 2007: Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case. Mon. Wea. Rev., 135, 507525, doi:10.1175/MWR3313.1.

    • Search Google Scholar
    • Export Citation
  • Hu, M., Xue M. , and Brewster K. , 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698, doi:10.1175/MWR3092.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp.

  • Jensen, T., and Coauthors, 2010: An overview of the objective evaluation performed during the Hazardous Weather Testbed (HWT) 2010 Spring Experiment. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 13B.1. [Available online at http://ams.confex.com/ams/25SLS/techprogram/paper_175848.htm.]

  • Johnson, A., and Wang X. , 2012: Verification and calibration of neighborhood and object-based probabilistic precipitation forecasts from a multimodel convection-allowing ensemble. Mon. Wea. Rev., 140, 30543077, doi:10.1175/MWR-D-11-00356.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., and Wang X. , 2013: Object-based evaluation of a storm-scale ensemble during the 2009 NOAA Hazardous Weather Testbed Spring Experiment. Mon. Wea. Rev., 141, 10791098, doi:10.1175/MWR-D-12-00140.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., Wang X. , Kong F. , and Xue M. , 2011a: Hierarchical cluster analysis of a convection-allowing ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part I: Development of the object-oriented cluster analysis method for precipitation fields. Mon. Wea. Rev., 139, 36733693, doi:10.1175/MWR-D-11-00015.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., Wang X. , Kong F. , and Xue M. , 2011b: Hierarchical cluster analysis of a convection-allowing ensemble during the Hazardous Weather Testbed 2009 Spring Experiment. Part II: Ensemble clustering over the whole experiment period. Mon. Wea. Rev., 139, 36943710, doi:10.1175/MWR-D-11-00016.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., Wang X. , Kong F. , and Xue M. , 2013: Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts. Mon. Wea. Rev., 141, 34133425, doi:10.1175/MWR-D-13-00027.1.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., Xue M. , and Tong M. , 2012: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, with verification against polarimetric radar data. Mon. Wea. Rev., 140, 14571475, doi:10.1175/MWR-D-11-00032.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2010a: Assessing advances in the assimilation of radar data and other mesoscale observations within a collaborative forecasting–research environment. Wea. Forecasting, 25, 15101521, doi:10.1175/2010WAF2222405.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., Dembek S. R. , Weiss S. J. , Case J. L. , Levit J. J. , and Sobash R. A. , 2010b: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542, doi:10.1175/2010WAF2222430.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 1213–1225, doi:10.1175/BAMS-D-11-00264.1.

    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2010: Evaluation of CAPS multi-model storm-scale ensemble forecast for the NOAA HWT 2010 Spring Experiment. Preprints, 25th Conf. on Severe Local Storms, Amer. Meteor. Soc., P4.18. [Available online at https://ams.confex.com/ams/pdfpapers/175822.pdf.]

  • Lack, S., Limpert G. L. , and Fox N. I. , 2010: An object-oriented multiscale verification scheme. Wea. Forecasting, 25, 7992, doi:10.1175/2009WAF2222245.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Hondl K. , and Rabin R. , 2009: An efficient, general-purpose technique for identifying storm cells in geospatial images. J. Atmos. Oceanic Technol., 26, 523537, doi:10.1175/2008JTECHA1153.1.

    • Search Google Scholar
    • Export Citation
  • Lim, K.-S. S., and Hong S.-Y. , 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, doi:10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, doi:10.1111/j.2153-3490.1969.tb00444.x.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Miller, S., and Correia J. Jr., 2012: Preliminary assessment of timing differences between convective initiation and severe initiation. Preprints, 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 135. [Available online at https://ams.confex.com/ams/26SLS/webprogram/Paper212595.html.]

  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., Curry J. A. , and Khvorostyanov V. I. , 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Nachamkin, J. E., 2004: Mesoscale verification using meteorological composites. Mon. Wea. Rev., 132, 941955, doi:10.1175/1520-0493(2004)132<0941:MVUMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Putnam, B. J., Xue M. , Jung Y. , Snook N. A. , and Zhang G. , 2014: The analysis and prediction of microphysical states and polarimetric variables in a mesoscale convective system using double-moment microphysics, multinetwork radar data, and the ensemble Kalman filter. Mon. Wea. Rev., 142, 141–162, doi:10.1175/MWR-D-13-00042.1.

    • Search Google Scholar
    • Export Citation
  • R Development Core Team, cited2013: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [Available online at http://www.R-project.org.]

  • Roberts, N. M., and Lean H. W. , 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., and Coauthors, 2009: The NCEP North American Mesoscale modeling system: Recent changes and future plans. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 2A.4. [Available online at https://ams.confex.com/ams/pdfpapers/154114.pdf.]

  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, doi:10.1175/2009WAF2222267.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Weisman M. L. , 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488494, doi:10.1175/2008MWR2583.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Snyder, C., and Zhang F. , 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, doi:10.1175//2555.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Rasmussen R. M. , and Manning K. , 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and Xue M. , 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807, doi:10.1175/MWR2898.1.

    • Search Google Scholar
    • Export Citation
  • Tuttle, J. D., and Davis C. A. , 2006: Corridors of warm season precipitation in the central United States. Mon. Wea. Rev., 134, 22972317, doi:10.1175/MWR3188.1.

    • Search Google Scholar
    • Export Citation
  • Wernli, H., Paulat M. , Hagen M. , and Frei C. , 2008: SAL—A novel quality measure for the verification of quantitative precipitation forecasts. Mon. Wea. Rev., 136, 44704487, doi:10.1175/2008MWR2415.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., Wang D. , Gao J. , Brewster K. , and Droegemeier K. K. , 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139170, doi:10.1007/s00703-001-0595-6.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2008: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2008 Spring Experiment. Preprints, 24th Conf. Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 12.2. [Available online at https://ams.confex.com/ams/pdfpapers/142036.pdf.]

  • Xue, M., and Coauthors, 2010: CAPS realtime storm-scale ensemble and high-resolution forecasts for the NOAA Hazardous Weather Testbed 2010 Spring Experiment. Preprints, 25th Conf. on Severe Local Storms, Denver, CO, Amer. Meteor. Soc., 7B.3. [Available online at https://ams.confex.com/ams/pdfpapers/176056.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 261 146 13
PDF Downloads 236 151 1

Application of Object-Based Time-Domain Diagnostics for Tracking Precipitation Systems in Convection-Allowing Models

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 Developmental Testbed Center, Boulder, Colorado
  • | 3 Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 4 Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Meaningful verification and evaluation of convection-allowing models requires approaches that do not rely on point-to-point matches of forecast and observed fields. In this study, one such approach—a beta version of the Method for Object-Based Diagnostic Evaluation (MODE) that incorporates the time dimension [known as MODE time-domain (MODE-TD)]—was applied to 30-h precipitation forecasts from four 4-km grid-spacing members of the 2010 Storm-Scale Ensemble Forecast system with different microphysics parameterizations. Including time in MODE-TD provides information on rainfall system evolution like lifetime, timing of initiation and dissipation, and translation.

The simulations depicted the spatial distribution of time-domain precipitation objects across the United States quite well. However, all simulations overpredicted the number of objects, with the Thompson microphysics scheme overpredicting the most and the Morrison method the least. For the smallest smoothing radius and rainfall threshold used to define objects [8 km and 0.10 in. (1 in. = 2.54 cm), respectively], the most common object duration was 3 h in both models and observations. With an increased smoothing radius and rainfall threshold, the most common duration became shorter. The simulations depicted the diurnal cycle of object frequencies well, but overpredicted object frequencies uniformly across all forecast hours. The simulations had spurious maxima in initiating objects at the beginning of the forecast and a corresponding spurious maximum in dissipating objects slightly later. Examining average object velocities, a slow bias was found in the simulations, which was most pronounced in the Thompson member. These findings should aid users and developers of convection-allowing models and motivate future work utilizing time-domain methods for verifying high-resolution forecasts.

Corresponding author address: Adam J. Clark, National Weather Center, NSSL/FRDD, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: adam.clark@noaa.gov

Abstract

Meaningful verification and evaluation of convection-allowing models requires approaches that do not rely on point-to-point matches of forecast and observed fields. In this study, one such approach—a beta version of the Method for Object-Based Diagnostic Evaluation (MODE) that incorporates the time dimension [known as MODE time-domain (MODE-TD)]—was applied to 30-h precipitation forecasts from four 4-km grid-spacing members of the 2010 Storm-Scale Ensemble Forecast system with different microphysics parameterizations. Including time in MODE-TD provides information on rainfall system evolution like lifetime, timing of initiation and dissipation, and translation.

The simulations depicted the spatial distribution of time-domain precipitation objects across the United States quite well. However, all simulations overpredicted the number of objects, with the Thompson microphysics scheme overpredicting the most and the Morrison method the least. For the smallest smoothing radius and rainfall threshold used to define objects [8 km and 0.10 in. (1 in. = 2.54 cm), respectively], the most common object duration was 3 h in both models and observations. With an increased smoothing radius and rainfall threshold, the most common duration became shorter. The simulations depicted the diurnal cycle of object frequencies well, but overpredicted object frequencies uniformly across all forecast hours. The simulations had spurious maxima in initiating objects at the beginning of the forecast and a corresponding spurious maximum in dissipating objects slightly later. Examining average object velocities, a slow bias was found in the simulations, which was most pronounced in the Thompson member. These findings should aid users and developers of convection-allowing models and motivate future work utilizing time-domain methods for verifying high-resolution forecasts.

Corresponding author address: Adam J. Clark, National Weather Center, NSSL/FRDD, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: adam.clark@noaa.gov
Save