• Andretta, T. A., and Geerts B. , 2010: Heavy snowfall produced by topographically induced winds in the Snake River Plain of eastern Idaho: Part I: Observational analysis. Electron. J. Severe Storms Meteor.,5 (3). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/view/56/56.]

  • Bluestein, H., 1992: Principles of Kinematics and Dynamics. Vol. I, Synoptic–Dynamic Meteorology in Midlatitudes,Oxford University Press, 594 pp.

  • Bluestein, H., 1993: Observations and Theory of Weather Systems.Vol. II, Synoptic–Dynamic Meteorology in Midlatitudes, Oxford University Press, 431 pp.

    • Search Google Scholar
    • Export Citation
  • Bryan, G. H., and Fritsch J. M. , 2000: Moist absolute instability: The sixth static stability state. Bull. Amer. Meteor. Soc., 81, 12071230, doi:10.1175/1520-0477(2000)081<1287:MAITSS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., 1997: Mesoscale anticyclonic circulations in the lee of the central Rocky Mountains. Mon. Wea. Rev., 125, 28382855, doi:10.1175/1520-0493(1997)125<2838:MACITL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeVoir, G. A., 2004: High impact sub-advisory snow events: The need to effectively communicate the threat of short duration high intensity snowfall. Preprints, 20th Conf. on Weather Analysis and Forecasting, Seattle, WA, Amer. Meteor. Soc., P10.2. [Available online at https://ams.confex.com/ams/pdfpapers/68261.pdf.]

  • Doswell, C. A., III, Brooks H. E. , and Maddox R. A. , 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1983: On assessing local conditional symmetric instability from atmospheric soundings. Mon. Wea. Rev., 111, 20162033, doi:10.1175/1520-0493(1983)111<2016:OALCSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Environment Canada, cited 2013a: About radar. [Available online at http://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=2B931828-1.]

  • Environment Canada, cited 2013b: Public alerting criteria. [Available online at http://www.ec.gc.ca/meteo-weather/default.asp?lang=En&n=D9553Alberta5-1.]

  • Ho, C., 2013: Calgary gets dump of snow as cold front moves in; 45 car crashes overnight. Calgary Herald, 11 January.

  • Hoskins, B. J., Draghici I. , and Davies H. C. , 1978: A new look at the ω-equation. Quart. J. Roy. Meteor. Soc., 104, 3138, doi:10.1002/qj.49710443903.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z., Gall R. , and Pyle M. E. , 2010: Scientific documentation for the NMM solver. NCAR Tech. Note NCAR/TN-477+STR, 54 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-845.pdf.]

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keyser, D., Reeder M. J. , and Reed R. J. , 1988: A generalization of Petterssen’s frontogenesis function and its relation to the forcing of vertical motion. Mon. Wea. Rev., 116, 762780, doi:10.1175/1520-0493(1988)116<0762:AGOPFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. J., and Durran D. R. , 2005a: Atmospheric factors governing banded orographic convection. J. Atmos. Sci.,62, 3758–3774, doi:10.1175/JAS3568.1.

  • Kirschbaum, D. J., and Durran D. R. , 2005b: Observation and modeling of banded orographic convection. J. Atmos. Sci.,62, 1463–1479, doi:10.1175/JAS3417.1.

  • Knievel, J. C., Bryan G. H. , and Hacker J. P. , 2007: Explicit numerical diffusion in the WRF model. Mon. Wea. Rev., 135, 38083824, doi:10.1175/2007MWR2100.1.

    • Search Google Scholar
    • Export Citation
  • Koch, S., DesJardins M. , and Kocin P. , 1983: An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Climate Appl. Meteor., 22, 14871503, doi:10.1175/1520-0450(1983)022<1487:AIBOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Makela, A., Saltikoff E. , Julkunen J. , Juga I. , Gregow E. , and Niemela S. , 2013: Cold season thunderstorms in Finland and their effect on aviation safety. Bull. Amer. Meteor. Soc., 94, 847858, doi:10.1175/BAMS-D-12-00039.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Miller, J. E., 1948: On the concept of frontogenesis. J. Meteor., 5, 169171, doi:10.1175/1520-0469(1948)005<0169:OTCOF>2.0.CO;2.

  • Milrad, S. M., Gyakum J. R. , Atallah E. H. , and Smith J. F. , 2011: A diagnostic examination of the eastern Ontario and western Quebec wintertime convection of 28 January 2010. Wea. Forecasting, 26, 301318, doi:10.1175/2010WAF2222432.1.

    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., Atallah E. H. , and Gyakum J. R. , 2013: Precipitation modulation by the Saint Lawrence River valley in association with transitioning tropical cyclones. Wea. Forecasting, 28, 331352, doi:10.1175/WAF-D-12-00071.1.

    • Search Google Scholar
    • Export Citation
  • Moore, J. T., and Vanknowe G. E. , 1992: The effect of jet streak curvature on kinematic fields. Mon. Wea. Rev., 120, 24292441, doi:10.1175/1520-0493(1992)120<2429:TEOJSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moore, J. T., and Lambert T. E. , 1993: The use of equivalent potential vorticity to diagnose regions of conditional symmetric instability. Wea. Forecasting, 8, 301308, doi:10.1175/1520-0434(1993)008<0301:TUOEPV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicosia, D. J., and Grumm R. H. , 1999: Mesoscale band formation in three major northeastern United States snowstorms. Wea. Forecasting, 14, 346368, doi:10.1175/1520-0434(1999)014<0346:MBFITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., Bosart L. F. , Keyser D. , and Waldstreicher J. S. , 2004: An observational study of cold season–banded precipitation in Northeast U.S. cyclones. Wea. Forecasting, 19, 9931010, doi:10.1175/815.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., Waldstreicher J. S. , Keyser D. , and Bosart L. F. , 2006: A forecast strategy for anticipating cold season mesoscale band formation within eastern U.S. cyclones. Wea. Forecasting, 21, 323, doi:10.1175/WAF907.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., Colle B. A. , and Yuter S. E. , 2008: High-resolution observations and model simulations of the life cyclone of an intense mesoscale snowband over the northeastern United States. Mon. Wea. Rev., 136, 14331456, doi:10.1175/2007MWR2233.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., Colle B. A. , and McTaggart-Cowan R. , 2009: The role of moist processes in the formation and evolution of mesoscale snowbands within the comma head of Northeast U.S. cyclones. Mon. Wea. Rev., 137, 26622686, doi:10.1175/2009MWR2874.1.

    • Search Google Scholar
    • Export Citation
  • Novak, D. R., Colle B. A. , and Aiyyer A. R. , 2010: Evolution of mesoscale precipitation band environments within the comma head of Northeast U.S. cyclones. Mon. Wea. Rev., 138, 23542374, doi:10.1175/2010MWR3219.1.

    • Search Google Scholar
    • Export Citation
  • Pettegrew, B. P., Market P. S. , Wolf R. A. , Holle R. L. , and Demetriades N. W. S. , 2009: A case study of severe winter convection in the Midwest. Wea. Forecasting, 24, 121139, doi:10.1175/2008WAF2007103.1.

    • Search Google Scholar
    • Export Citation
  • Sanders, F., and Hoskins B. J. , 1990: An easy method for estimation of Q-vectors from weather maps. Wea. Forecasting, 5, 346353, doi:10.1175/1520-0434(1990)005<0346:AEMFEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and Schumacher P. N. , 1999: The use and misuse of conditional symmetric instability. Mon. Wea. Rev., 127, 27092732, doi:10.1175/1520-0493(1999)127<2709:TUAMOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schultz, D. M., and Knox J. A. , 2007: Banded convection caused by frontogenesis in a conditionally, symmetrically, and inertially unstable environment. Mon. Wea. Rev., 135, 20952109, doi:10.1175/MWR3400.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., Schultz D. M. , and Knox J. A. , 2010: Convective snowbands downstream of the Rocky Mountains in an environment with conditional, dry symmetric, and inertial instabilities. Mon. Wea. Rev., 138, 44164438, doi:10.1175/2010MWR3334.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN–475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Wetzel, S. W., and Martin J. E. , 2001: An operational ingredients-based methodology for forecasting midlatitude winter season precipitation. Wea. Forecasting, 16, 156167, doi:10.1175/1520-0434(2001)016<0156:AOIBMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, D., 2011: Snow causes traffic chaos. Calgary Sun, 3 December.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 119 56 9
PDF Downloads 106 45 4

On the Dynamics, Thermodynamics, and Forecast Model Evaluation of Two Snow-Burst Events in Southern Alberta

View More View Less
  • 1 Applied Aviation Sciences Department, Embry-Riddle Aeronautical University, Daytona Beach, Florida
  • | 2 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
  • | 3 Department of Marine Sciences, University of Connecticut—Avery Point, Groton, Connecticut
  • | 4 Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Two high-impact convective snowband events (“snow bursts”) that affected Calgary, Alberta, Canada, are examined to better understand the dynamics and thermodynamics of heavy snowbands not associated with lake effects or the cold conveyor belt of synoptic-scale cyclones. Such events are typically characterized by brief, but heavy, periods of snow; low visibilities; and substantial hazards to automobile and aviation interests. Previous literature on these events has been limited to a few case studies across North America, including near the leeside foothills of the U.S. Rockies. The large-scale dynamics and thermodynamics are investigated using the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR). Previously, high-resolution convection-explicit Weather Research and Forecasting Model (WRF) simulations have shown some ability to successfully reproduce the dynamics, thermodynamics, and appearance of convective snowbands, with small errors in location and timing. Therefore, WRF simulations are performed for both events, and are evaluated along with the NCEP North American Mesoscale (NAM) model forecasts. Both the NARR and WRF simulations show that while the two snow bursts are similar in appearance, they form as a result of different dynamic and thermodynamic mechanisms. The first event occurs downstream of an upper-tropospheric jet streak in a region of little synoptic-scale ascent, where ageostrophic frontogenesis helps to release conditional, dry symmetric, and inertial instability in an unsaturated environment. The inertial instability is determined to be related to fast flow over upstream high terrain. The second event occurs in a saturated environment in a region of Q-vector convergence (primarily geostrophic frontogenesis), which acts to release conditional, convective, and conditional symmetric instability (CSI).

Corresponding author address: Shawn M. Milrad, Applied Aviation Sciences Dept., Embry-Riddle Aeronautical University, 600 S. Clyde Morris Blvd., Daytona Beach, FL 32119. E-mail: shawn.milrad@gmail.com

Abstract

Two high-impact convective snowband events (“snow bursts”) that affected Calgary, Alberta, Canada, are examined to better understand the dynamics and thermodynamics of heavy snowbands not associated with lake effects or the cold conveyor belt of synoptic-scale cyclones. Such events are typically characterized by brief, but heavy, periods of snow; low visibilities; and substantial hazards to automobile and aviation interests. Previous literature on these events has been limited to a few case studies across North America, including near the leeside foothills of the U.S. Rockies. The large-scale dynamics and thermodynamics are investigated using the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR). Previously, high-resolution convection-explicit Weather Research and Forecasting Model (WRF) simulations have shown some ability to successfully reproduce the dynamics, thermodynamics, and appearance of convective snowbands, with small errors in location and timing. Therefore, WRF simulations are performed for both events, and are evaluated along with the NCEP North American Mesoscale (NAM) model forecasts. Both the NARR and WRF simulations show that while the two snow bursts are similar in appearance, they form as a result of different dynamic and thermodynamic mechanisms. The first event occurs downstream of an upper-tropospheric jet streak in a region of little synoptic-scale ascent, where ageostrophic frontogenesis helps to release conditional, dry symmetric, and inertial instability in an unsaturated environment. The inertial instability is determined to be related to fast flow over upstream high terrain. The second event occurs in a saturated environment in a region of Q-vector convergence (primarily geostrophic frontogenesis), which acts to release conditional, convective, and conditional symmetric instability (CSI).

Corresponding author address: Shawn M. Milrad, Applied Aviation Sciences Dept., Embry-Riddle Aeronautical University, 600 S. Clyde Morris Blvd., Daytona Beach, FL 32119. E-mail: shawn.milrad@gmail.com
Save