• Adler, R. F., and Fenn D. D. , 1979a: Thunderstorm intensity as determined from satellite data. J. Appl. Meteor., 18, 502517, doi:10.1175/1520-0450(1979)018<0502:TIADFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., and Fenn D. D. , 1979b: Thunderstorm vertical velocities estimated from satellite data. J. Atmos. Sci., 36, 17471754, doi:10.1175/1520-0469(1979)036<1747:TVVEFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., Markus M. J. , and Fenn D. D. , 1985: Detection of severe Midwest thunderstorms using geosynchronous satellite data. Mon. Wea. Rev., 113, 769781, doi:10.1175/1520-0493(1985)113<0769:DOSMTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bedka, K., Brunner J. , Dworak R. , Feltz W. , Otkin J. , and Greenwald T. , 2010: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181202, doi:10.1175/2009JAMC2286.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2006: From the 13-km RUC to the Rapid Refresh. Preprints, 12th Conf. on Aviation, Range, and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., 9.1. [Available online at https://ams.confex.com/ams/pdfpapers/104851.pdf.]

  • Bluestein, H. B., 1993: Precipitation systems in the midlatitudes. Observations and Theory of Weather Systems, H. Bluestein, Ed., Vol II, Synoptic–Dynamic Meteorology in Midlatitudes, Oxford University Press, 426–568.

  • Bothwell, P. D., Hart J. A. , and Thompson R. L. , 2002: An integrated three-dimensional objective analysis scheme in use at the Storm Prediction Center. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., JP3.1. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47482.htm.]

  • Brooks, H. E., Doswell C. A. III, and Kay M. P. , 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, doi:10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., and Smith P. L. , 2013: Comments on “An objective high-resolution hail climatology of the contiguous United States.” Wea. Forecasting, 28, 915917, doi:10.1175/WAF-D-13-00020.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., Smith T. M. , Lakshmanan V. , Brooks H. E. , and Ortega K. L. , 2012: An objective high-resolution hail climatology of the contiguous United States. Wea. Forecasting, 27, 12351248, doi:10.1175/WAF-D-11-00151.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., Pavolonis M. J. , Sieglaff J. M. , and Heidinger A. K. , 2013: Evolution of severe and nonsevere convection inferred from GOES-derived cloud properties. J. Appl. Meteor. Climatol., 52, 2009–2023, doi:10.1175/JAMC-D-12-0330.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., 2012: Verification of RUC 0–1-h forecasts and SPC mesoscale analyses using VORTEX2 soundings. Wea. Forecasting, 27, 667683, doi:10.1175/WAF-D-11-00096.1.

    • Search Google Scholar
    • Export Citation
  • Cox, S. K., 1976: Observations of cloud infrared effective emissivity. J. Atmos. Sci., 33, 287289, doi:10.1175/1520-0469(1976)033<0287:OOCIEE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and Alberty R. L. , 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691687, doi:10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Domingos, P., and Pazzani M. , 1997: Beyond independence: Conditions for the optimality of the simple Bayesian classifier. Mach. Learn., 29, 103130, doi:10.1023/A:1007413511361.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, Brooks H. E. , and Kay M. P. , 2005: Climatological estimates of daily local nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, doi:10.1175/WAF866.1.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., Blakeslee R. , Boccippio D. , Christian H. , Koshak W. , and Petersen W. A. , 2006: GOES-R Lightning Mapper (GLM) research and applications risk reduction. Preprints, Second Symp.: Toward a Global Earth Observation System of Systems—Future National Operational Environmental Satellite Systems, New Orleans, LA, Amer. Meteor. Soc., P2.2. [Available online at https://ams.confex.com/ams/Annual2006/techprogram/paper_101645.htm.]

  • Greene, D. R., and Clark R. A. , 1972: Vertically integrated liquid water—New analysis tool. Mon. Wea. Rev., 100, 548552, doi:10.1175/1520-0493(1972)100<0548:VILWNA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guillot, E., Smith T. , Lakshmanan V. , Elmore K. , Burgess D. , and Stumpf G. , 2008: Tornado and severe thunderstorm warning forecast skill and its relationship to storm type. Preprints, 24th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, New Orleans, LA, Amer. Meteor. Soc., 4A.3. [Available online at https://ams.confex.com/ams/pdfpapers/132244.pdf.]

  • Hartung, D. C., Sieglaff J. M. , Cronce L. M. , and Feltz W. F. , 2013: An intercomparison of UW cloud-top cooling rates with WSR-88D radar data. Wea. Forecasting, 28, 463480, doi:10.1175/WAF-D-12-00021.1.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., and Straka W. C. III, 2013: ABI cloud mask. Version 3.0, NOAA/NESDIS/Center for Satellite Applications and Research (STAR) ATBD, 106 pp. [Available online at http://www.star.nesdis.noaa.gov/goesr/docs/ATBD/Cloud_Mask.pdf.]

  • ISU, cited 2013: IEM Valid Time Extent Code (VTEC) application. [Available online at mesonet.agron.iastate.edu/vtec/.]

  • Kain, J., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, doi:10.1175/BAMS-D-11-00264.1.

    • Search Google Scholar
    • Export Citation
  • Kelly, D. L., Schaefer J. T. , and Doswell C. A. III, 1985: Climatology of nontornadic severe thunderstorm events in the United States. Mon. Wea. Rev., 113, 19972014, doi:10.1175/1520-0493(1985)113<1997:CONSTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and Sitkowski M. , 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892, doi:10.1175/2008MWR2701.1.

    • Search Google Scholar
    • Export Citation
  • Kuncheva, L. I., 2006: On the optimality of naïve Bayes with dependent binary features. Pattern Recognit. Lett., 27, 830837, doi:10.1016/j.patrec.2005.12.001.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Rabin R. , and DeBrunner V. , 2003: Multiscale storm identification and forecast. Atmos. Res., 67–68, 367380, doi:10.1016/S0169-8095(03)00068-1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Smith T. , Hondl K. , Stumpf G. J. , and Witt A. , 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802823, doi:10.1175/WAF942.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Fritz A. , Smith T. , Hondl K. , and Stumpf G. , 2007a: An automated technique to quality control radar reflectivity data. J. Appl. Meteor. Climatol., 46, 288305, doi:10.1175/JAM2460.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Smith T. , Stumpf G. , and Hondl K. , 2007b: The Warning Decision Support System-Integrated Information. Wea. Forecasting, 22, 596612, doi:10.1175/WAF1009.1.

    • Search Google Scholar
    • Export Citation
  • Lemon, L. R., and Doswell C. A. , 1979: Severe thunderstorm evolution and mesocyclone structure as related to tornadogenesis. Mon. Wea. Rev., 107, 11841197, doi:10.1175/1520-0493(1979)107<1184:STEAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lubber, M., cited 2013: Wild weather a new normal and insurance companies must act. Forbes. [Available online at http://www.forbes.com/sites/mindylubber/2012/08/30/wild-weather-a-new-normal-and-insurance-companies-must-act/.]

  • Markowski, P., and Richardson Y. , 2010a: Convection initiation. Mesoscale Meteorology in Midlatitudes, Wiley-Blackwell, 185–199.

  • Markowski, P., and Richardson Y. , 2010b: Organization of isolated convection. Mesoscale Meteorology in Midlatitudes, P. Markowski and Y. Richardson, Eds., Series on Advancing Weather and Climate Science, Wiley-Blackwell, 201–244.

  • Mecikalski, J. R., and Bedka K. M. , 2006: Forecasting convective initiation by monitoring the evolution of moving cumulus in daytime GOES imagery. Mon. Wea. Rev., 134, 4978, doi:10.1175/MWR3062.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., Watts P. D. , and Koenig M. , 2011: Use of Meteosat Second Generation optimal cloud analysis fields for understanding physical attributes of growing cumulus clouds. Atmos. Res., 102, 175190, doi:10.1016/j.atmosres.2011.06.023.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and Purdom J. F. W. , 1994: Introducing GOES-I: The first of a new generation of Geostationary Operational Environmental Satellites. Bull. Amer. Meteor. Soc., 75, 757781, doi:10.1175/1520-0477(1994)075<0757:IGITFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morgan, G. M., Jr., and Summers P. W. , 1982: Hailfall and hailstorm characteristics. Thunderstorm Morphology and Dynamics, E. Kessler, Ed., Vol. 2, Thunderstorms: A Social, Scientific, and Technological Documentary, U.S. Government Printing Office, 363–408.

  • Mueller, C., Saxen T. , Roberts R. , Wilson J. , Betancourt T. , Dettling S. , Oien N. , and Yee J. , 2003: NCAR Auto-Nowcast System. Wea. Forecasting, 18, 545561, doi:10.1175/1520-0434(2003)018<0545:NAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NSIDC, cited 2013: Mapx: Map Transformations Library. [Available online at http://geospatialmethods.org/mapx/.]

  • NWS, cited 2013: WFO severe weather products specification. National Weather Service Instruction 10-511. [Available online at http://www.weather.gov/directives/.]

  • Ortega, K. L., Smith T. M. , and Stumpf G. J. , 2006: Verification of multi-sensor, multi-radar hail diagnosis techniques. Preprints, Symp. on the Challenges of Severe Convective Storms, Atlanta, GA, Amer. Meteor. Soc., P1.1. [Available online at https://ams.confex.com/ams/pdfpapers/104885.pdf.]

  • Ortega, K. L., Smith T. M. , Manross K. L. , Kolodziej A. G. , Scharfenberg K. A. , Witt A. , and Gourley J. J. , 2009: The Severe Hazards Analysis and Verification Experiment. Bull. Amer. Meteor. Soc., 90, 15191530, doi:10.1175/2009BAMS2815.1.

    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., 2010a: GOES-R Advanced Baseline Imager (ABI) algorithm theoretical basis document for cloud type and cloud phase. Version 2, NOAA/NESDIS/Center for Satellite Applications and Research (STAR), 96 pp. [Available online at http://www.goes-r.gov/products/ATBDs/baseline/Cloud_CldType_v2.0_no_color.pdf.]

  • Pavolonis, M. J., 2010b: Advances in extracting cloud composition information from spaceborne infrared radiances—A robust alternative to brightness temperatures. Part I: Theory. J. Appl. Meteor. Climatol., 49, 19922012, doi:10.1175/2010JAMC2433.1.

    • Search Google Scholar
    • Export Citation
  • Peirce, C. S., 1884: The numerical measure of the success of predictions. Science, 4, 453454, doi:10.1126/science.ns-4.93.453-a.

  • Polger, P. D., Goldsmith B. S. , Przywarty R. C. , and Bocchieri J. R. , 1994: National Weather Service warning performance based on the WSR-88D. Bull. Amer. Meteor. Soc., 75, 203214, doi:10.1175/1520-0477(1994)075<0203:NWSWPB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530535, doi:10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reynolds, D. W., 1980: Observations of damaging hailstorms from geosynchronous satellite digital data. Mon. Wea. Rev., 108, 337348, doi:10.1175/1520-0493(1980)108<0337:OODHFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and Rutledge S. , 2003: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting, 18, 562584, doi:10.1175/1520-0434(2003)018<0562:NSIAGU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., Gunshor M. M. , Menzel W. P. , Gurka J. J. , Li J. , and Bachmeier A. S. , 2005: Introducing the next-generation Advanced Baseline Imager on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, doi:10.1175/BAMS-86-8-1079.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., Petersen W. A. , and Carey L. D. , 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744755, doi:10.1175/WAF-D-10-05026.1.

    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., Cronce L. M. , Feltz W. F. , Bedka K. M. , Pavolonis M. J. , and Heidinger A. K. , 2011: Nowcasting convective storm initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends. J. Appl. Meteor. Climatol., 50, 110126, doi:10.1175/2010JAMC2496.1.

    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., Hartung D. C. , Feltz W. F. , Cronce L. M. , and Lakshmanan V. , 2013: Development and application of a satellite-based convective cloud object-tracking methodology: A multipurpose data fusion tool. J. Atmos. Oceanic Technol., 30, 510525, doi:10.1175/JTECH-D-12-00114.1.

    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., Cronce L. M. , and Feltz W. F. , 2014: Improving satellite-based convective cloud growth monitoring with visible optical depth retrievals. J. Appl. Meteor. Climatol., 53, 506–520, doi:10.1175/JAMC-D-13-0139.1.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., Witt A. , Mitchell E. D. , Spencer P. L. , Johnson J. T. , Eilts M. D. , Thomas K. W. , and Burgess D. W. , 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304326, doi:10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., Edwards R. , Hart J. A. , Elmore K. L. , and Markowski P. , 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., Mead C. M. , and Edwards R. , 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, doi:10.1175/WAF969.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Wheatley D. M. , Atkins N. T. , Przybylinski R. W. , and Wolf R. , 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, doi:10.1175/WAF925.1.

    • Search Google Scholar
    • Export Citation
  • Vila, D. A., Machado L. A. T. , Laurent H. , and Velasco I. , 2008: Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) using satellite infrared imagery: Methodology and validation. Wea. Forecasting, 23, 233245, doi:10.1175/2007WAF2006121.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Elsevier, 627 pp.

  • Wilson, C. J., Ortega K. L. , and Lakshmanan V. , 2009: Evaluating multi-radar, multi-sensor hail diagnosis with high resolution hail reports. Proc. 25th Int. Conf. on Interactive Information and Processing Systems (IIPS) for Meteorology, Oceanography, and Hydrology, Phoenix, AZ, Amer. Meteor. Soc., P2.9. [Available online at https://ams.confex.com/ams/pdfpapers/146206.pdf.]

  • Witt, A., Eilts M. D. , Stumpf G. J. , Johnson J. T. , Mitchell E. D. , and Thomas K. W. , 1998a: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, doi:10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witt, A., Eilts M. D. , Stumpf G. J. , Mitchell E. D. , Johnson J. T. , and Thomas K. W. , 1998b: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518, doi:10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zinner, T., Mannstein H. , and Tafferner A. , 2008: Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data. Meteor. Atmos. Phys., 101, 191210, doi:10.1007/s00703-008-0290-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 412 227 27
PDF Downloads 355 188 22

An Empirical Model for Assessing the Severe Weather Potential of Developing Convection

View More View Less
  • 1 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin
  • | 2 NOAA/NESDIS/Center for Satellite Applications and Research/Advanced Satellite Products Team, Madison, Wisconsin
  • | 3 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin
  • | 4 NOAA/NESDIS/Center for Satellite Applications and Research/Regional and Mesoscale Meteorology Branch, Fort Collins, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The formation and maintenance of thunderstorms that produce large hail, strong winds, and tornadoes are often difficult to forecast due to their rapid evolution and complex interactions with environmental features that are challenging to observe. Given inherent uncertainties in storm development, it is intuitive to predict severe storms in a probabilistic manner. This paper presents such an approach to forecasting severe thunderstorms and their associated hazards, fusing together data from several sources as input into a statistical model. Mesoscale numerical weather prediction (NWP) models have been developed in part to forecast environments favorable to severe storm development. Geostationary satellites, such as the Geostationary Operational Environmental Satellite (GOES) series, maintain a frequently updating view of growing cumulus clouds over the contiguous United States to provide temporal trends in developing convection to forecasters. The Next Generation Weather Radar (NEXRAD) network delivers repeated scans of hydrometeors inside storms, monitoring the intensification of hydrometeor size and extent, as well as hydrometeor motion. Forecasters utilize NWP models, and GOES and NEXRAD data, at different stages of the forecast of severe storms, and the model described in this paper exploits data from each in an attempt to predict severe hazards in a more accurate and timely manner while providing uncertainty information to the forecaster. A preliminary evaluation of the model demonstrates good skill in the forecast of storms, and also displays the potential to increase lead time on severe hazards, as measured relative to the issuance times of National Weather Service (NWS) severe thunderstorm and tornado warnings and occurrence times of severe events in local storm reports.

Corresponding author address: John L. Cintineo, Cooperative Institute for Meteorological Satellite Studies, 1225 W. Dayton St., Madison, WI 53706. E-mail: jlc248@gmail.com

Abstract

The formation and maintenance of thunderstorms that produce large hail, strong winds, and tornadoes are often difficult to forecast due to their rapid evolution and complex interactions with environmental features that are challenging to observe. Given inherent uncertainties in storm development, it is intuitive to predict severe storms in a probabilistic manner. This paper presents such an approach to forecasting severe thunderstorms and their associated hazards, fusing together data from several sources as input into a statistical model. Mesoscale numerical weather prediction (NWP) models have been developed in part to forecast environments favorable to severe storm development. Geostationary satellites, such as the Geostationary Operational Environmental Satellite (GOES) series, maintain a frequently updating view of growing cumulus clouds over the contiguous United States to provide temporal trends in developing convection to forecasters. The Next Generation Weather Radar (NEXRAD) network delivers repeated scans of hydrometeors inside storms, monitoring the intensification of hydrometeor size and extent, as well as hydrometeor motion. Forecasters utilize NWP models, and GOES and NEXRAD data, at different stages of the forecast of severe storms, and the model described in this paper exploits data from each in an attempt to predict severe hazards in a more accurate and timely manner while providing uncertainty information to the forecaster. A preliminary evaluation of the model demonstrates good skill in the forecast of storms, and also displays the potential to increase lead time on severe hazards, as measured relative to the issuance times of National Weather Service (NWS) severe thunderstorm and tornado warnings and occurrence times of severe events in local storm reports.

Corresponding author address: John L. Cintineo, Cooperative Institute for Meteorological Satellite Studies, 1225 W. Dayton St., Madison, WI 53706. E-mail: jlc248@gmail.com
Save