Numerical Analysis and Diagnosis of the Hydrodynamic Effects Produced by Hurricane Gordon along the Coast of Spain

Gabriel Diaz-Hernandez Environmental Hydraulics Institute, Santander, Cantabria, Spain

Search for other papers by Gabriel Diaz-Hernandez in
Current site
Google Scholar
PubMed
Close
,
Fernando J. Mendez Environmental Hydraulics Institute, Santander, Cantabria, Spain

Search for other papers by Fernando J. Mendez in
Current site
Google Scholar
PubMed
Close
, and
Roberto Mínguez Environmental Hydraulics Institute, Santander, Cantabria, Spain

Search for other papers by Roberto Mínguez in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents a detailed hindcast for the generation and propagation of sea state variables—significant wave height H s, peak period T p, mean direction θ, and spectral shape γσ —associated with cyclonic events to numerically diagnose their possible hydrodynamic effects over the northeastern Atlantic. An example of such cyclonic events is Hurricane Gordon, which occurred during the second half of August 2012. Extreme hurricane-strength winds produced new and atypically low-frequency (about 14 s) packs of energy. The preexistent wave spectrum suddenly experienced an addition of low-frequency energy along the coast of Cádiz, Spain. This study presents the results of a comprehensive analysis developed to reconstruct the events produced by Hurricane Gordon (2012) along the coast of Cádiz. The analysis features the use of (i) parametric models for the characterization of hurricane winds and pressure fields, (ii) implementation of the Simulating Waves Nearshore (SWAN) model for the generation and propagation of waves in the northeast Atlantic Ocean, and (iii) its coupling with the MOPLA—taken from the Spanish acronym for wave propagation model, current, and morphodynamic evolution of beaches—model for the evaluation of longshore currents. The numerical wave characterization, generation, and propagation were validated with instrumental data from deep-water and coastal buoys.

Corresponding author address: Gabriel Diaz-Hernandez, Environmental Hydraulics Institute, Universidad de Cantabria, c/ Isabel Torres 15, Parque Cientfico y Tecnológico de Cantabria, Santander 39011, Cantabria, Spain. E-mail: diazg@unican.es

Abstract

This paper presents a detailed hindcast for the generation and propagation of sea state variables—significant wave height H s, peak period T p, mean direction θ, and spectral shape γσ —associated with cyclonic events to numerically diagnose their possible hydrodynamic effects over the northeastern Atlantic. An example of such cyclonic events is Hurricane Gordon, which occurred during the second half of August 2012. Extreme hurricane-strength winds produced new and atypically low-frequency (about 14 s) packs of energy. The preexistent wave spectrum suddenly experienced an addition of low-frequency energy along the coast of Cádiz, Spain. This study presents the results of a comprehensive analysis developed to reconstruct the events produced by Hurricane Gordon (2012) along the coast of Cádiz. The analysis features the use of (i) parametric models for the characterization of hurricane winds and pressure fields, (ii) implementation of the Simulating Waves Nearshore (SWAN) model for the generation and propagation of waves in the northeast Atlantic Ocean, and (iii) its coupling with the MOPLA—taken from the Spanish acronym for wave propagation model, current, and morphodynamic evolution of beaches—model for the evaluation of longshore currents. The numerical wave characterization, generation, and propagation were validated with instrumental data from deep-water and coastal buoys.

Corresponding author address: Gabriel Diaz-Hernandez, Environmental Hydraulics Institute, Universidad de Cantabria, c/ Isabel Torres 15, Parque Cientfico y Tecnológico de Cantabria, Santander 39011, Cantabria, Spain. E-mail: diazg@unican.es
Save
  • Aparicio Florido, J. A., and Coauthors, 2013: La resaca marina del 21 de agosto de 2012 en las costas de Cádiz. IAEM-España, 86 pp. [Available online at http://www.iaem.es/Documentos/informe-resacamarina-cadiz-21082012.pdf.]

  • Avila, L. A., 2012: Tropical cyclone report: Hurricane Gordon (AL082012) 15-20 August 2012. National Hurricane Center, 12 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL082012_Gordon.pdf.]

  • Battjes, J., and Janssen J. , 1978: Energy loss and set-up due to breaking of random waves. Coastal Engineering 1978: Proceedings of the 16th Coastal Engineering Conference, B. L. Edge, Ed., American Society of Civil Engineers, 569–587.

  • Booij, N., Ris R. C. , and Holthuijsen L. H. , 1999: A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104, 76497666, doi:10.1029/98JC02622.

    • Search Google Scholar
    • Export Citation
  • Bretschneider, C., 1990: Tropical cyclones. Handbook of Coastal and Ocean Engineering, J. B. Herbich, Ed., Gulf Publishing, 249–370.

  • Bunya, S., and Coauthors, 2010: A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part I: Model development and validation. Mon. Wea. Rev., 138, 345377, doi:10.1175/2009MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • Chao, Y., Alves J.-E. G. M. , and Tolman H. L. , 2005: An operational system for predicting hurricane-generated wind waves in the North Atlantic Ocean. Wea. Forecasting, 20, 652671, doi:10.1175/WAF851.1.

    • Search Google Scholar
    • Export Citation
  • Diaz-Hernandez, G., Robles L. , Appendini C. , Mendez F. , Torres-Freyermuth A. , Losada I. , and P. S., 2012: An engineering approach for modeling hurricane extreme waves using analytical and numerical tools. Proc. ATC and SEI Conf. on Advances in Hurricane Engineering, Miami, FL, American Society of Civil Engineers, 765–776, doi:10.1061/9780784412626.066.

  • Dietrich, J. C., and Coauthors, 2010: A high-resolution coupled riverine flow, tide, wind, wind wave, and storm surge model for southern Louisiana and Mississippi. Part II: Synoptic description and analysis of Hurricanes Katrina and Rita. Mon. Wea. Rev., 138, 378404, doi:10.1175/2009MWR2907.1.

    • Search Google Scholar
    • Export Citation
  • Dietrich, J. C., and Coauthors, 2011: Hurricane Gustav (2008) waves and storm surge: Hindcast, synoptic analysis, and validation in southern Louisiana. Mon. Wea. Rev., 139, 24882522, doi:10.1175/2011MWR3611.1.

    • Search Google Scholar
    • Export Citation
  • González, M., Medina R. , Gonzalez-Ondina J. , Osorio A. , Méndez F. J. , and García E. , 2007: An integrated coastal modeling system for analyzing beach processes and beach restoration projects, SMC. Comput. Geosci., 33, 916931, doi:10.1016/j.cageo.2006.12.005.

    • Search Google Scholar
    • Export Citation
  • Haeseler, S., 2012: Hurricane Gordon in the area of the Azores in August 2012. Deutscher Wetterdienst Rep., 6 pp.

  • Holland, G., 1980: An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 12121218, doi:10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holland, G., 2008: A revised hurricane pressure–wind model. Mon. Wea. Rev., 136, 34323445, doi:10.1175/2008MWR2395.1.

  • Huang, Y., Weisberg R. H. , and Zheng L. , 2013: Gulf of Mexico hurricane wave simulations using SWAN: Bulk formula based drag coefficient sensitivity for Hurricane Ike. J. Geophys. Res. Oceans,118, 3916–3938, doi:10.1002/jgrc.20283.

  • Janssen, P. A. E. M., 1989: Wave-induced stress and the drag of air flow over sea waves. J. Phys. Oceanogr.,19, 745–754, doi:10.1175/1520-0485(1989)019<0745:WISATD>2.0.CO;2.

  • Jarvinen, B. R., Neumann C. J. , and Davis M. A. S. , 1984: A tropical cyclone data tape for the North Atlantic basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS 22, 24 pp. [Available online at http://www.nhc.noaa.gov/pdf/NWS-NHC-1988-22.pdf.]

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kennedy, A. B., and Coauthors, 2011: Origin of the Hurricane Ike forerunner surge. Geophys. Res. Lett.,38,L08608, doi:10.1029/2011GL047090.

  • Kirby, J. T., and Dalrymple R. A. , 1983: A parabolic equation for the combined refraction–diffraction of Stokes waves by mildly varying topography. J. Fluid Mech., 136, 453466, doi:10.1017/S0022112083002232.

    • Search Google Scholar
    • Export Citation
  • Kirby, J. T., and Ozkan H. T. , 1994: REF/DIF S version 1.1: Documentation and user’s manual. CACR Rep. 94-04, Center for Applied Coastal Research, University of Delaware, 128 pp. [Available online at http://chinacat.coastal.udel.edu/papers/cacr-94-04.ps.]

  • Komen, G. J., and Hasselmann K. , 1984: On the existence of a fully developed wind-sea spectrum. J. Phys. Oceanogr., 14, 12711285, doi:10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landsea, C., and Coauthors, 2004: The Atlantic Hurricane Database Re-Analysis Project: Documentation for the 1851–1910 alterations and additions to the HURDAT database. Hurricanes and Typhoons: Past, Present and Future, R. J. Murnane and K.-B. Liu, Eds., Columbia University Press, 177–221.

  • Landsea, C., and Coauthors, 2008: A reanalysis of the 1911–20 Atlantic Hurricane Database. J. Climate,21, 2138–2168, doi:10.1175/2007JCLI1119.1.

  • Lehner, S., Schulz-Stellenfleth J. , Schattler B. , Breit H. , and Horstmann J. , 2000: Wind and wave measurements using complex ERS-2 SAR wave mode data. IEEE Trans. Geosci. Remote Sens.,38, 22462257, doi:10.1109/36.868882.

    • Search Google Scholar
    • Export Citation
  • Mínguez, R., Reguero B. G. , Luceño A. , and Méndez F. J. , 2012: Regression models for outlier identification (hurricanes and typhoons) in wave hindcast databases. J. Atmos. Oceanic Technol., 29, 267285, doi:10.1175/JTECH-D-11-00059.1.

    • Search Google Scholar
    • Export Citation
  • Palmsten, M. L., and Sallenger A. , 2001: Application of the SWAN wave model to hurricane generated waves on the North Carolina continental shelf. Eos, Trans. Amer. Geophys. Union,82 (Fall Meet. Suppl.), Abstract OS31B-0416.

  • Popinet, S., Gorman R. M. , Rickard G. J. , and Tolman H. L. , 2010: A quadtree-adaptive spectral wave model. Ocean Modell., 34, 3649, doi:10.1016/j.ocemod.2010.04.003.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., Houston S. H. , Amat N. , and Morisseau-Leroy L. R. , 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364, doi:10.1016/S0167-6105(98)00131-7.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and Coauthors, 2010: Reconstruction of Hurricane Katrina’s wind fields for storm surge and wave hindcasting. Ocean Eng., 37, 2636, doi:10.1016/j.oceaneng.2009.08.014.

    • Search Google Scholar
    • Export Citation
  • Rattanapitikon, W., and Shibayama T. , 1998: Energy dissipation model for regular and irregular breaking waves. Coastal Eng. J., 40, 327346, doi:10.1142/S0578563498000194.

    • Search Google Scholar
    • Export Citation
  • Reguero, B., Menéndez M. , Méndez F. J. , Mínguez R. , and Losada I. J. , 2012: A global ocean wave (GOW) calibrated reanalysis from 1948 onwards. Coastal Eng., 65, 3855, doi:10.1016/j.coastaleng.2012.03.003.

    • Search Google Scholar
    • Export Citation
  • Ris, R. C., Holthuijsen L. H. , and Booij N. , 1999: A third-generation wave model for coastal regions: 2. Verification. J. Geophys. Res, 104, 76677681, doi:10.1029/1998JC900123.

    • Search Google Scholar
    • Export Citation
  • RoSPA, 2005: Safety on European beaches: Operational guidelines. 1st ed. Royal Society for the Prevention of Accidents, 40 pp.

  • Ruiz, A., Nistal A. , Pérez B. , Huerta M. , Ruiz M. , Nieto J. , and Serrano O. , 1995: Base de datos de clima marítimo en España. Ing. Agua,2, 75–88. [Available online at https://upcommons.upc.edu/revistes/bitstream/2099/3351/1/25article5.pdf.]

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., Wittmann P. A. , and Tolman H. L. , 2010: Consistent tropical cyclone wind and wave forecasts for the U.S. Navy. Wea. Forecasting, 25, 12931306, doi:10.1175/2010WAF2222376.1.

    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., Wittmann P. A. , Serra E. A. , Tolman H. L. , Schauer J. , and Marchok T. , 2013: Evaluation of wave forecasts consistent with tropical cyclone warning center wind forecasts. Wea. Forecasting, 28, 287294, doi:10.1175/WAF-D-12-00060.1.

    • Search Google Scholar
    • Export Citation
  • Silva, R., Govaere G. , Salles P. , Bautista G. , and Díaz G. , 2002: Oceanographic vulnerability to hurricanes on the Mexican coast. Coastal Engineering 2002: Solving Coastal Conundrums; Proceedings of the 28th International Conference, J. McKee Smith, Ed., Vol. 1, World Scientific, 39–51.

  • Smith, J. M., and Resio D. T. , 1999: STWAVE: Steady-state spectral wave model user’s manual for STWAVE. Engineering Research and Development Center Tech. Rep. ERDC/CHL SR-01-1, USACE, 60 pp.

  • Thornton, E. B., and Guza R. T. , 1986: Surf zone longshore currents and random waves: Field data and models. J. Phys. Oceanogr., 16, 11651178, doi:10.1175/1520-0485(1986)016<1165:SZLCAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zijlema, M., 2010: Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Eng., 57, 267277, doi:10.1016/j.coastaleng.2009.10.011.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 851 646 62
PDF Downloads 199 42 1