An Observational Study of the Effects of Dry Air Produced in Dissipating Convective Storms on the Predictability of Severe Weather

Howard B. Bluestein School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Howard B. Bluestein in
Current site
Google Scholar
PubMed
Close
and
Jeffrey C. Snyder Radar Research and Development Division, National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Jeffrey C. Snyder in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper documents features that led to major forecast errors on the 12–24-h time scale in the nature and location of severe weather in the southern plains on 30 May 2012. Evidence is presented that the forecast errors were the result of 1) dry air that originated in a region of dissipating, elevated convective storms, and which was advected in a narrow tongue into western Oklahoma, inhibiting convective initiation; 2) the development of a cyclone along the dryline in western Texas, to the east of which several supercells formed; 3) the upscale development of the supercells into a mesoscale convective system (MCS) at nightfall; and 4) the dissipation of an MCS that had formed along a cold front in southwestern Kansas and was propagating into northwestern Oklahoma, as it encountered dry, subsiding air underneath the stratiform precipitation region of the rear portion of the MCS farther south. There was a meridionally oriented swath of high winds in clear air, in between the two MCSs. This swath of high winds may have been associated with a bore triggered at night by the MCSs approaching from the north, as the MCS collapsed, producing a gust front that propagated through stable, low-level air. This case study illustrates how the predictability of severe weather in a region can be extremely sensitive to the details of where nearby convective storms form and how they evolve. It also highlights the likely importance of the accurate representation of cloud microphysics and dynamics in numerical forecast models on predictability.

Corresponding author address: Howard B. Bluestein, School of Meteorology, University of Oklahoma, Ste. 5900, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: hblue@ou.edu

Abstract

This paper documents features that led to major forecast errors on the 12–24-h time scale in the nature and location of severe weather in the southern plains on 30 May 2012. Evidence is presented that the forecast errors were the result of 1) dry air that originated in a region of dissipating, elevated convective storms, and which was advected in a narrow tongue into western Oklahoma, inhibiting convective initiation; 2) the development of a cyclone along the dryline in western Texas, to the east of which several supercells formed; 3) the upscale development of the supercells into a mesoscale convective system (MCS) at nightfall; and 4) the dissipation of an MCS that had formed along a cold front in southwestern Kansas and was propagating into northwestern Oklahoma, as it encountered dry, subsiding air underneath the stratiform precipitation region of the rear portion of the MCS farther south. There was a meridionally oriented swath of high winds in clear air, in between the two MCSs. This swath of high winds may have been associated with a bore triggered at night by the MCSs approaching from the north, as the MCS collapsed, producing a gust front that propagated through stable, low-level air. This case study illustrates how the predictability of severe weather in a region can be extremely sensitive to the details of where nearby convective storms form and how they evolve. It also highlights the likely importance of the accurate representation of cloud microphysics and dynamics in numerical forecast models on predictability.

Corresponding author address: Howard B. Bluestein, School of Meteorology, University of Oklahoma, Ste. 5900, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: hblue@ou.edu
Save
  • Bluestein, H. B., 2009: The formation and early evolution of the Greensburg, Kansas, tornadic supercell on 4 May 2007. Wea. Forecasting, 24, 899920, doi:10.1175/2009WAF2222206.1.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., 2013: Severe Convective Storms and Tornadoes: Observations and Dynamics. Springer/Praxis, 456 pp.

  • Brock, F. V., Crawford K. , Elliott R. , Cuperus G. , Stadler S. , Johnson H. , and Eilts M. , 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, doi:10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. , Xue M. , and Kong F. , 2010: Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather environment. Wea. Forecasting, 25, 10521081, doi:10.1175/2010WAF2222390.1.

    • Search Google Scholar
    • Export Citation
  • Coleman, T. A., and Knupp K. R. , 2011: Radiometer and profiler analysis of the effects of a bore and solitary wave on the stability of the nocturnal boundary layer. Mon. Wea. Rev., 139, 211223, doi:10.1175/2010MWR3376.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., Elmore K. L. , Kain J. S. , Weiss S. J. , Xue M. , and Weisman M. L. , 2010: Evaluation of WRF Model output for severe weather forecasting from the 2008 NOAA Hazardous Weather Testbed Spring Experiment. Wea. Forecasting, 25, 408427, doi:10.1175/2009WAF2222258.1.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1986: The effect of ambient stratification and moisture on the motion of atmospheric undular bores. J. Atmos. Sci., 43, 171181, doi:10.1175/1520-0469(1986)043<0171:TEOASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crook, N. A., 1988: Trapping of low-level internal gravity waves. J. Atmos. Sci., 45, 15331541, doi:10.1175/1520-0469(1988)045<1533:TOLLIG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and Alberty R. L. , 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691687, doi:10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dabberdt, W. F., and Schlatter T. W. , 1996: Research opportunities from emerging atmospheric observing and modeling capabilities. Bull. Amer. Meteor. Soc., 77, 305323, doi:10.1175/1520-0477(1996)077<0305:ROFEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., 1997: The numerical prediction of thunderstorms: Challenges, potential benefits, and results from real-time operational tests. WMO Bull., 46, 324336.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K., and Coauthors, 1995: Report of the First Prospectus Development Team of the U.S. Weather Research Program to NOAA and the NSF. Bull. Amer. Meteor. Soc., 76, 11941208.

    • Search Google Scholar
    • Export Citation
  • Fiebrich, C. A., and Crawford K. C. , 2001: The impact of unique meteorological phenomena detected by the Oklahoma Mesonet and ARS Micronet on automated quality control. Bull. Amer. Meteor. Soc., 82, 21732187, doi:10.1175/1520-0477(2001)082<2173:TIOUMP>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goff, R. C., 1976: Vertical structure of thunderstorm outflows. Mon. Wea. Rev., 104, 14291440, doi:10.1175/1520-0493(1976)104<1429:VSOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haertel, P. T., Johnson R. H. , and Tulich S. N. , 2001: Some simple simulations of thunderstorm outflows. J. Atmos. Sci., 58, 504516, doi:10.1175/1520-0469(2001)058<0504:SSSOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and Doswell C. A. III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, doi:10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, B. C., 1983: The heat burst of 29 May 1976. Mon. Wea. Rev., 111, 17761792, doi:10.1175/1520-0493(1983)111<1776:THBOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., Chen S. , and Toth J. J. , 1989: Circulations associated with a mature-to-decaying midlatitude mesoscale convective system. Part I: Surface features—Heat bursts and mesolow development. Mon. Wea. Rev., 117, 942959, doi:10.1175/1520-0493(1989)117<0942:CAWAMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, doi:10.1175/BAMS-D-11-00264.1.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., Dorian P. B. , Ferrare R. , Melfi S. , Skillman W. C. , and Whiteman D. , 1991: Structure of an internal bore and dissipating gravity current as revealed by Raman lidar. Mon. Wea. Rev., 119, 857887, doi:10.1175/1520-0493(1991)119<0857:SOAIBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., Flamant C. , Wilson J. W. , Gentry B. M. , and Jamison B. D. , 2008: An atmospheric soliton observed with Doppler radar, differential absorption lidar, and a molecular Doppler lidar. J. Atmos. Oceanic Technol., 25, 12671287, doi:10.1175/2007JTECHA951.1.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and Houze R. A. Jr., 1979: Melting and evaporation of hydrometeors in precipitation from the anvil clouds of deep tropical convection. J. Atmos. Sci., 36, 669679, doi:10.1175/1520-0469(1979)036<0669:MAEOHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1990: Numerical prediction of thunderstorms—Has its time come? Quart. J. Roy. Meteor. Soc., 116, 779798, doi:10.1002/qj.49711649402.

    • Search Google Scholar
    • Export Citation
  • Marsham, J. H., Trier S. B. , Weckwerth T. M. , and Wilson J. W. , 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June _IHOP 2002. Mon. Wea. Rev., 139, 247271, doi:10.1175/2010MWR3422.1.

    • Search Google Scholar
    • Export Citation
  • Moller, A. R., Doswell C. A. III, Foster M. P. , and Woodall G. R. , 1994: The operational recognition of supercell thunderstorm environments and storm structures. Wea. Forecasting, 9, 327347, doi:10.1175/1520-0434(1994)009<0327:TOROST>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • National Research Council, 1998: The Atmospheric Sciences: Entering the Twenty-First Century.National Academy Press, 364 pp.

  • OFCM, 1995: Surface weather observations and reports. Federal Meteorological Handbook 1, Office of the Federal Coordinator for Meteorological Services and Supporting Research, 99 pp.

  • Pazmany, A. L., Mead J. B. , Bluestein H. B. , Snyder J. C. , and Houser J. B. , 2013: A mobile, rapid-scanning, X-band, polarimetric (RaXPol) Doppler radar system. J. Atmos. Oceanic Technol., 30, 13981413, doi:10.1175/JTECH-D-12-00166.1.

    • Search Google Scholar
    • Export Citation
  • Rottman, J. W., and Simpson J. E. , 1989: The formation of internal bores in the atmosphere: A laboratory model. Quart. J. Roy. Meteor. Soc., 115, 941963, doi:10.1002/qj.49711548809.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., Klemp J. B. , and Weisman M. L. , 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schroeder, J. L., Burgett W. S. , Haynie K. B. , Sonmez I. , Skwira G. D. , Doggett A. L. , and Lipe J. W. , 2005: The West Texas Mesonet: A technical overview. J. Atmos. Oceanic Technol., 22, 211222, doi:10.1175/JTECH-1690.1.

    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., and Purdom J. F. W. , 1986: The use of satellite data for mesoscale analyses and forecasting applications Mesoscale Meteorology and Forecasting, P. S. Ray, Ed., Amer. Meteor. Soc., 118 – 150.

  • Scorer, R. S., 1949: Theory of waves in the lee of mountains. Quart. J. Roy. Meteor. Soc., 75, 4156, doi:10.1002/qj.49707532308.

  • Simpson, J. E., 1997: Gravity Currents in the Environment and the Laboratory.2nd ed. Cambridge Universitiy Press, 244 pp.

  • Smull, B. F., and Houze R. A. Jr., 1987: Rear inflow in squall lines with trailing stratiform precipitation. Mon. Wea. Rev., 115, 28692889, doi:10.1175/1520-0493(1987)115<2869:RIISLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Stumpf G. J. , and Manross K. L. , 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680687, doi:10.1175/WAF864.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 1982: The life cycle of thunderstorm gust fronts as viewed with Doppler radar and rawinsonde data. Mon. Wea. Rev., 110, 10601082, doi:10.1175/1520-0493(1982)110<1060:TLCOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weber, B. L., and Coauthors, 1990: Preliminary evaluation of the first NOAA Demonstration Network Wind Profiler. J. Atmos. Oceanic Technol., 7, 909918, doi:10.1175/1520-0426(1990)007<0909:PEOTFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Parsons D. P. , 2006: A review of convection initiation and motivation for IHOP 2002. Mon. Wea. Rev., 134, 522, doi:10.1175/MWR3067.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: Convectively generated rear-inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 18261847, doi:10.1175/1520-0469(1992)049<1826:TROCGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Davis C. , Wang W. , Manning K. W. , and Klemp J. B. , 2008: Experiences with a 0–36-h explicit convective forecasts with the WRF-ARW Model. Wea. Forecasting, 23, 407437, doi:10.1175/2007WAF2007005.1.

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., Bluestein H. B. , and Pazmany A. L. , 2006: Finescale radar observations of the 22 May 2002 dryline during the International H2O Project (IHOP). Mon. Wea. Rev., 134, 273293, doi:10.1175/MWR3068.1.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., 1977: Mesoscale and convective-scale downdrafts as distinct components of squall-line structure. Mon. Wea. Rev., 105, 15681589, doi:10.1175/1520-0493(1977)105<1568:MACDAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 235 76 18
PDF Downloads 177 44 13