Hurricane Wind–Pressure Relationship and Eyewall Replacement Cycles

James P. Kossin NOAA/National Climatic Data Center, Asheville, North Carolina

Search for other papers by James P. Kossin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The relationship between minimum central surface pressure and the maximum sustained surface wind in tropical cyclones has been studied for many years, motivated by the fact that minimum pressure is generally easier to measure, but maximum wind is a much more relevant metric when considering tropical cyclone risk and potential impacts. It is well understood that tropical cyclone wind is closely related to the radial gradient of pressure through gradient or cyclostrophic balance assumptions, and not to a single point value of the minimum pressure near the storm center. But it is often the case that the maximum wind must be inferred from this single value. To accomplish this, a number of statistical relationships have been documented, such as those used in the Dvorak technique for estimating tropical cyclone intensity from satellite imagery. Here, the relationship between tropical cyclone maximum wind and minimum pressure is explored during eyewall replacement cycles (ERCs) that have been observed in North Atlantic hurricanes. It is shown that the wind–pressure relationship (WPR) can vary substantially during an ERC and generally moves away from the statistically fitted WPR used by the Dvorak technique in that basin. The changes in WPR during an ERC can be quite different depending on the intensity of the hurricane at the start of the ERC.

Corresponding author address: James P. Kossin, NOAA/Cooperative Institute for Meteorological Satellite Studies, 1225 W. Dayton St., Madison, WI 53706. E-mail: james.kossin@noaa.gov

Abstract

The relationship between minimum central surface pressure and the maximum sustained surface wind in tropical cyclones has been studied for many years, motivated by the fact that minimum pressure is generally easier to measure, but maximum wind is a much more relevant metric when considering tropical cyclone risk and potential impacts. It is well understood that tropical cyclone wind is closely related to the radial gradient of pressure through gradient or cyclostrophic balance assumptions, and not to a single point value of the minimum pressure near the storm center. But it is often the case that the maximum wind must be inferred from this single value. To accomplish this, a number of statistical relationships have been documented, such as those used in the Dvorak technique for estimating tropical cyclone intensity from satellite imagery. Here, the relationship between tropical cyclone maximum wind and minimum pressure is explored during eyewall replacement cycles (ERCs) that have been observed in North Atlantic hurricanes. It is shown that the wind–pressure relationship (WPR) can vary substantially during an ERC and generally moves away from the statistically fitted WPR used by the Dvorak technique in that basin. The changes in WPR during an ERC can be quite different depending on the intensity of the hurricane at the start of the ERC.

Corresponding author address: James P. Kossin, NOAA/Cooperative Institute for Meteorological Satellite Studies, 1225 W. Dayton St., Madison, WI 53706. E-mail: james.kossin@noaa.gov
Save
  • Brown, D. P., Franklin J. L. , and Landsea C. , 2006: A fresh look at tropical cyclone pressure–wind relationships using recent reconnaissance-based “best track” data (1998–2005). Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 3B.5. [Available online at https://ams.confex.com/ams/pdfpapers/107190.pdf.]

  • Dvorak, V. F., 1975: Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Wea. Rev., 103, 420430, doi:10.1175/1520-0493(1975)103<0420:TCIAAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., Lord S. J. , and Marks F. D. Jr., 1988: Dropwindsonde and radar observations of the eye of Hurricane Gloria (1985). Mon. Wea. Rev., 116, 12371244, doi:10.1175/1520-0493(1988)116<1237:DAROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., Black M. L. , and Valde K. , 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18, 3244, doi:10.1175/1520-0434(2003)018<0032:GDWPIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, J. D., and Coauthors, 2006: Tropical cyclone multiple eyewall configurations. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., 6B.1. [Available online at https://ams.confex.com/ams/pdfpapers/108864.pdf.]

  • Kidder, S. Q., Goldberg M. D. , Zehr R. M. , DeMaria M. , Purdom J. F. W. , Velden C. S. , Grody N. C. , and Kusselson S. J. , 2000: Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit (AMSU). Bull. Amer. Meteor. Soc., 81, 12411259, doi:10.1175/1520-0477(2000)081<1241:SAOTCU>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and Zehr R. M. , 2007: Reexamination of tropical cyclone wind–pressure relationships. Wea. Forecasting, 22, 7188, doi:10.1175/WAF965.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and Eastin M. D. , 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 10791090, doi:10.1175/1520-0469(2001)058<1079:TDRITK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and Schubert W. H. , 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 21962209, doi:10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and Velden C. S. , 2004: A pronounced bias in tropical cyclone minimum sea level pressure estimation based on the Dvorak technique. Mon. Wea. Rev., 132, 165173, doi:10.1175/1520-0493(2004)132<0165:APBITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and Sitkowski M. , 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892, doi:10.1175/2008MWR2701.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and Sitkowski M. , 2012: Predicting hurricane intensity and structure changes associated with eyewall replacement cycles. Wea. Forecasting, 27, 484488, doi:10.1175/WAF-D-11-00106.1.

    • Search Google Scholar
    • Export Citation
  • Lander, M. A., 1999: A tropical cyclone with a very large eye. Mon. Wea. Rev., 127, 137142, doi:10.1175/1520-0493(1999)127<0137:ATCWAV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., Schubert W. H. , and Kossin J. P. , 2008: Some dynamical aspects of tropical cyclone concentric eyewalls. Quart. J. Roy. Meteor. Soc., 134, 583593, doi:10.1002/qj.237.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and McNoldy B. D. , 2010: Application of the concepts of Rossby length and Rossby depth to tropical cyclone dynamics. J. Adv. Model. Earth Syst.,2, doi:10.3894/JAMES.2010.2.7.

  • Schubert, W. H., Rozoff C. M. , Vigh J. L. , McNoldy B. D. , and Kossin J. P. , 2007: On the distribution of subsidence in the hurricane eye. Quart. J. Roy. Meteor. Soc., 133, 595605, doi:10.1002/qj.49.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., Kossin J. P. , and Rozoff C. M. , 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, doi:10.1175/MWR-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., Kossin J. P. , Rozoff C. M. , and Knaff J. , 2012: Hurricane eyewall replacement cycles and the relict inner eyewall circulation. Mon. Wea. Rev., 140, 40354045, doi:10.1175/MWR-D-11-00349.1.

    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 11951210, doi:10.1175/BAMS-87-9-1195.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1988: The dynamics of the tropical cyclone core. Aust. Meteor. Mag., 36, 183191.

  • Willoughby, H. E., Clos J. A. , and Shoreibah M. , 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395411, doi:10.1175/1520-0469(1982)039<0395:CEWSWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1251 532 39
PDF Downloads 706 197 18