Time-Expanded Sampling for Ensemble-Based Data Assimilation Applied to Conventional and Satellite Observations

Qingyun Zhao Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by Qingyun Zhao in
Current site
Google Scholar
PubMed
Close
,
Qin Xu National Storms Laboratory, Norman, Oklahoma

Search for other papers by Qin Xu in
Current site
Google Scholar
PubMed
Close
,
Yi Jin Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by Yi Jin in
Current site
Google Scholar
PubMed
Close
,
Justin McLay Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by Justin McLay in
Current site
Google Scholar
PubMed
Close
, and
Carolyn Reynolds Marine Meteorology Division, Naval Research Laboratory, Monterey, California

Search for other papers by Carolyn Reynolds in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The time-expanded sampling (TES) method, designed to improve the effectiveness and efficiency of ensemble-based data assimilation and subsequent forecast with reduced ensemble size, is tested with conventional and satellite data for operational applications constrained by computational resources. The test uses the recently developed ensemble Kalman filter (EnKF) at the Naval Research Laboratory (NRL) for mesoscale data assimilation with the U.S. Navy’s mesoscale numerical weather prediction model. Experiments are performed for a period of 6 days with a continuous update cycle of 12 h. Results from the experiments show remarkable improvements in both the ensemble analyses and forecasts with TES compared to those without. The improvements in the EnKF analyses by TES are very similar across the model’s three nested grids of 45-, 15-, and 5-km grid spacing, respectively. This study demonstrates the usefulness of the TES method for ensemble-based data assimilation when the ensemble size cannot be sufficiently large because of operational constraints in situations where a time-critical environment assessment is needed or the computational resources are limited.

Corresponding author address: Dr. Qingyun Zhao, Naval Research Laboratory, 7 Grace Hopper Ave., Mail Stop II, Monterey, CA 93943. E-mail: allen.zhao@nrlmry.navy.mil

Abstract

The time-expanded sampling (TES) method, designed to improve the effectiveness and efficiency of ensemble-based data assimilation and subsequent forecast with reduced ensemble size, is tested with conventional and satellite data for operational applications constrained by computational resources. The test uses the recently developed ensemble Kalman filter (EnKF) at the Naval Research Laboratory (NRL) for mesoscale data assimilation with the U.S. Navy’s mesoscale numerical weather prediction model. Experiments are performed for a period of 6 days with a continuous update cycle of 12 h. Results from the experiments show remarkable improvements in both the ensemble analyses and forecasts with TES compared to those without. The improvements in the EnKF analyses by TES are very similar across the model’s three nested grids of 45-, 15-, and 5-km grid spacing, respectively. This study demonstrates the usefulness of the TES method for ensemble-based data assimilation when the ensemble size cannot be sufficiently large because of operational constraints in situations where a time-critical environment assessment is needed or the computational resources are limited.

Corresponding author address: Dr. Qingyun Zhao, Naval Research Laboratory, 7 Grace Hopper Ave., Mail Stop II, Monterey, CA 93943. E-mail: allen.zhao@nrlmry.navy.mil
Save
  • Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. Mon. Wea. Rev., 140, 23592371, doi:10.1175/MWR-D-11-00013.1.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., and Collins N. , 2007: Scalable implementations of ensemble filter algorithms for data assimilation. J. Atmos. Oceanic Technol., 24, 14521463, doi:10.1175/JTECH2049.1.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 14310 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Greybush, S. J., Kalnay E. , Miyoshi T. , Ide K. , and Hunt B. R. , 2011: Balance and ensemble Kalman filter localization techniques. Mon. Wea. Rev., 139, 511522, doi:10.1175/2010MWR3328.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., Whitaker J. S. , and Snyder C. , 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 27762790, doi:10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and Rosmond T. E. , 1991: The description of the Navy Operational Global Atmospheric Prediction System’s spectral forecast model. Mon. Wea. Rev., 119, 17861815, doi:10.1175/1520-0493(1991)119<1786:TDOTNO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and Mitchell H. L. , 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, H. J., Xu Q. , Yao M. M. , and Gao S. T. , 2011: Time-expanded sampling for ensemble-based filters: Assimilation experiments with real radar observations. Adv. Atmos. Sci., 28, 743757, doi:10.1007/s00376-010-0021-4.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., Bishop C. H. , and Reynolds C. A. , 2008: Evaluation of the ensemble transform analysis perturbation scheme at NRL. Mon. Wea. Rev., 136, 10931108, doi:10.1175/2007MWR2010.1.

    • Search Google Scholar
    • Export Citation
  • McLay, J. G., Bishop C. H. , and Reynolds C. A. , 2010: A local formulation of the ensemble transform (ET) analysis perturbation scheme. Wea. Forecasting, 25, 985993, doi:10.1175/2010WAF2222359.1.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and Zhang F. , 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 14031423, doi:10.1175/MWR3352.1.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and Zhang F. , 2008a: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3DVAR in a real-data case study. Mon. Wea. Rev., 136, 552540.

    • Search Google Scholar
    • Export Citation
  • Meng, Z., and Zhang F. , 2008b: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVAR in a month-long experiment. Mon. Wea. Rev., 136, 36713682, doi:10.1175/2008MWR2270.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, H. L., Houtekamer P. L. , and Pellerin G. , 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 27912808, doi:10.1175/1520-0493(2002)130<2791:ESBAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peng, M. S., Ridout J. A. , and Hogan T. F. , 2004: Recent modifications of the Emanuel convective scheme in the Navy Operational Global Atmospheric Prediction System. Mon. Wea. Rev., 132, 12541268, doi:10.1175/1520-0493(2004)132<1254:RMOTEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J. S., and Hamill T. M. , 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 19131924, doi:10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., Lu H. , Gao S. , Xue M. , and Tong M. , 2008a: Time-expanded sampling for ensemble Kalman filter: Assimilation experiments with simulated Radar observations. Mon. Wea. Rev., 136, 26512667, doi:10.1175/2007MWR2185.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., Wei L. , Lu H. , Qiu C. , and Zhao Q. , 2008b: Time-expanded sampling for ensemble-based filters: Assimilation experiments with a shallow-water equation model. J. Geophys. Res., 113, D02114, doi:10.1029/2007JD008624.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2001: The Advanced Regional Prediction System (ARPS)—A multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteor. Atmos. Phys., 76, 143165, doi:10.1007/s007030170027.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Meng Z. , and Aksoy A. , 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 722736, doi:10.1175/MWR3101.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Weng Y. , Sippel J. , Meng Z. , and Bishop C. , 2009: Cloud resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 137, 21052125, doi:10.1175/2009MWR2645.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., Zhang F. , Holt T. , Bishop C. , and Xu Q. , 2013: Development of a mesoscale ensemble data assimilation system at the Naval Research Laboratory. Wea. Forecasting, 28, 13221336, doi:10.1175/WAF-D-13-00015.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 435 318 118
PDF Downloads 129 46 4