Improvements in the Probabilistic Prediction of Tropical Cyclone Rapid Intensification with Passive Microwave Observations

Christopher M. Rozoff CIMSS/University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Christopher M. Rozoff in
Current site
Google Scholar
PubMed
Close
,
Christopher S. Velden CIMSS/University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Christopher S. Velden in
Current site
Google Scholar
PubMed
Close
,
John Kaplan NOAA/HRD, Miami, Florida

Search for other papers by John Kaplan in
Current site
Google Scholar
PubMed
Close
,
James P. Kossin NOAA/NCDC, Asheville, North Carolina

Search for other papers by James P. Kossin in
Current site
Google Scholar
PubMed
Close
, and
Anthony J. Wimmers CIMSS/University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Anthony J. Wimmers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The probabilistic prediction of tropical cyclone (TC) rapid intensification (RI) in the Atlantic and eastern Pacific Ocean basins is examined here using a series of logistic regression models trained on environmental and infrared satellite-derived features. The environmental predictors are based on averaged values over a 24-h period following the forecast time. These models are compared against equivalent models enhanced with additional TC predictors created from passive satellite microwave imagery (MI). Leave-one-year-out cross validation on the developmental dataset shows that the inclusion of MI-based predictors yields more skillful RI models for a variety of RI and intensity thresholds. Compared with the baseline forecast skill of the non-MI-based RI models, the relative skill improvements from including MI-based predictors range from 10.6% to 44.9%. Using archived real-time data during the period 2004–13, evaluation of simulated real-time models is also carried out. Unlike in the model development stage, the simulated real-time setting involves using Global Forecast System forecasts for the non-satellite-based predictors instead of “perfect” observational-based predictors in the developmental data. In this case, the MI-based RI models still generate superior skill to the baseline RI models lacking MI-based predictors. The relative improvements gained in adding MI-based predictors are most notable in the Atlantic, where the non-MI versions of the models suffer acutely from the use of imperfect real-time data. In the Atlantic, relative skill improvements provided from the inclusion of MI-based predictors range from 53.5% to 103.0%. The eastern Pacific relative improvements are less impressive but are still uniformly positive.

Corresponding author address: Christopher M. Rozoff, CIMSS/University of Wisconsin–Madison, 1225 Dayton St., Madison, WI 53706. E-mail: chris.rozoff@ssec.wisc.edu

Abstract

The probabilistic prediction of tropical cyclone (TC) rapid intensification (RI) in the Atlantic and eastern Pacific Ocean basins is examined here using a series of logistic regression models trained on environmental and infrared satellite-derived features. The environmental predictors are based on averaged values over a 24-h period following the forecast time. These models are compared against equivalent models enhanced with additional TC predictors created from passive satellite microwave imagery (MI). Leave-one-year-out cross validation on the developmental dataset shows that the inclusion of MI-based predictors yields more skillful RI models for a variety of RI and intensity thresholds. Compared with the baseline forecast skill of the non-MI-based RI models, the relative skill improvements from including MI-based predictors range from 10.6% to 44.9%. Using archived real-time data during the period 2004–13, evaluation of simulated real-time models is also carried out. Unlike in the model development stage, the simulated real-time setting involves using Global Forecast System forecasts for the non-satellite-based predictors instead of “perfect” observational-based predictors in the developmental data. In this case, the MI-based RI models still generate superior skill to the baseline RI models lacking MI-based predictors. The relative improvements gained in adding MI-based predictors are most notable in the Atlantic, where the non-MI versions of the models suffer acutely from the use of imperfect real-time data. In the Atlantic, relative skill improvements provided from the inclusion of MI-based predictors range from 53.5% to 103.0%. The eastern Pacific relative improvements are less impressive but are still uniformly positive.

Corresponding author address: Christopher M. Rozoff, CIMSS/University of Wisconsin–Madison, 1225 Dayton St., Madison, WI 53706. E-mail: chris.rozoff@ssec.wisc.edu
Save
  • Cecil, D. J., 2011: Relating passive 37-GHz scattering to radar profiles in strong convection. J. Appl. Meteor. Climatol., 50, 233240, doi:10.1175/2010JAMC2506.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., and Zipser E. J. , 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part II: Intercomparison of observations. Mon. Wea. Rev., 130, 785801, doi:10.1175/1520-0493(2002)130<0785:RISALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., Zipser E. J. , and Nesbitt S. W. , 2002: Reflectivity, ice scattering, and lightning characteristics of hurricane eyewalls and rainbands. Part I: Quantitative description. Mon. Wea. Rev., 130, 769784, doi:10.1175/1520-0493(2002)130<0769:RISALC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., Mainelli M. , Shay L. K. , Knaff J. A. , and Kaplan J. , 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, doi:10.1175/WAF862.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., DeMaria R. , Knaff J. , and Molenar D. , 2012: Tropical cyclone lightning and rapid intensity change. Mon. Wea. Rev., 140, 18281842, doi:10.1175/MWR-D-11-00236.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., Sampson C. R. , Knaff J. A. , and Musgrave K. D. , 2014: Is tropical cyclone intensity guidance improving? Bull. Amer. Meteor. Soc., 95, 387398, doi:10.1175/BAMS-D-12-00240.1.

    • Search Google Scholar
    • Export Citation
  • Gall, R., Franklin J. , Marks F. , Rappaport E. N. , and Toepfer F. , 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, doi:10.1175/BAMS-D-12-00071.1.

    • Search Google Scholar
    • Export Citation
  • Hack, J. J., and Schubert W. H. , 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 15591573, doi:10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hawkins, J., and Velden C. , 2011: Supporting meteorological field experiment missions and postmission analysis with satellite digital data and products. Bull. Amer. Meteor. Soc., 92, 10091022, doi:10.1175/2011BAMS3138.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, J., Turk F. J. , Lee T. F. , and Richardson K. , 2008: Observations of tropical cyclones with the SSMIS. IEEE Trans. Geosci. Remote Sens., 46, 901912, doi:10.1109/TGRS.2008.915753.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., Peng M. S. , Fu B. , and Li T. , 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 32433271, doi:10.1175/2010MWR3185.1.

    • Search Google Scholar
    • Export Citation
  • Hong, L., 2008: Inter-satellite microwave radiometer calibration. Ph.D. dissertation, University of Central Florida, Orlando, FL, 187 pp.

  • Jarvinen, B. R., Neumann C. J. , and Davis M. A. S. , 1984: A tropical cyclone data tape for the North Atlantic basin, 1886–1983: Contents, limitations, and uses. NOAA Tech. Memo. NWS NHC 22, 21 pp. [Available online at http://www.nhc.noaa.gov/pdf/NWS-NHC-1988-22.pdf.]

  • Jiang, H., and Ramirez E. M. , 2013: Necessary conditions for tropical cyclone rapid intensification as derived from 11 years of TRMM data. J. Climate, 26, 64596470, doi:10.1175/JCLI-D-12-00432.1.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., Kieper M. , Yuan T. , Zipser E. J. , and Kaplan J. , 2011: Enhancement of SHIPS rapid intensification index using the 37 GHz ring pattern. 66th Interdepartmental Hurricane Conf., Miami, FL, Federal Coordinator for Meteorology. [Available online at http://www.ofcm.noaa.gov/ihc12/Presentations/02a-Session/05-IHC_2012_jiang.pdf.]

  • Jones, T. A., and Cecil D. J. , 2006: Histogram matching of AMSR-E and TMI brightness temperatures. Preprints, 14th Conf. on Satellite Meteorology and Oceanography, Atlanta, GA, Amer. Meteor. Soc., P1.23. [Available online at https://ams.confex.com/ams/pdfpapers/100880.pdf.]

  • Jones, T. A., Cecil D. J. , and DeMaria M. , 2006: Passive-microwave-enhanced Statistical Hurricane Intensity Prediction Scheme. Wea. Forecasting, 21, 613635, doi:10.1175/WAF941.1.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and DeMaria M. , 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kaplan, J., DeMaria M. , and Knaff J. A. , 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, doi:10.1175/2009WAF2222280.1.

    • Search Google Scholar
    • Export Citation
  • Kieper, M. E., and Jiang H. , 2012: Predicting tropical cyclone rapid intensification using the 37 GHz ring pattern identified from passive microwave measurements. Geophys. Res. Lett., 39, L13804, doi:10.1029/2012GL052115.

    • Search Google Scholar
    • Export Citation
  • Lee, T. F., Turk F. J. , Hawkins J. , and Richardson K. , 2002: Interpretation of TRMM TMI images of tropical cyclones. Earth Interact., 6, doi:10.1175/1087-3562(2002)006<0001:IOTTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G., Jewett B. , Gilmore M. , Nesbitt S. , and Hsieh T. , 2012: Vertical velocity and microphysical distributions related to rapid intensification in a simulation of Hurricane Dennis (2005). J. Atmos. Sci., 69, 35153534, doi:10.1175/JAS-D-12-016.1.

    • Search Google Scholar
    • Export Citation
  • McGaughey, G., Zipser E. J. , Spencer R. W. , and Hood R. E. , 1996: High-resolution passive microwave observations of convective systems over the tropical Pacific Ocean. J. Appl. Meteor., 35, 19211947, doi:10.1175/1520-0450(1996)035<1921:HRPMOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., and Vollaro D. , 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 38693885, doi:10.1175/2010MWR3378.1.

    • Search Google Scholar
    • Export Citation
  • Monette, S. A., Velden C. S. , Griffin K. S. , and Rozoff C. M. , 2012: Examining trends in satellite-derived tropical overshooting tops as a potential predictor of tropical cyclone rapid intensification. J. Appl. Meteor. Climatol., 51, 19171930, doi:10.1175/JAMC-D-11-0230.1.

    • Search Google Scholar
    • Export Citation
  • Nguyen, L., and Molinari J. , 2012: Rapid intensification of a sheared, fast-moving hurricane over the Gulf Stream. Mon. Wea. Rev., 140, 33613378, doi:10.1175/MWR-D-11-00293.1.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Moon Y. , and Stern D. P. , 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 33773405, doi:10.1175/JAS3988.1.

    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and Willoughby H. E. , 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, doi:10.1175/2008MWR2657.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., and Smith T. M. , 1994: Improved global sea surface temperature analyses using optimal interpolation. J. Climate, 7, 929948, doi:10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, R., Reasor P. , and Lorsolo S. , 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, doi:10.1175/MWR-D-12-00357.1.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., and Kossin J. P. , 2011: New probabilistic forecast models for the prediction of tropical cyclone rapid intensification. Wea. Forecasting, 26, 677689, doi:10.1175/WAF-D-10-05059.1.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., and Hack J. J. , 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 16871697, doi:10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and Willoughby H. E. , 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., Kossin J. , and Rozoff C. M. , 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, doi:10.1175/MWR-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., Goodman H. M. , and Hood R. E. , 1989: Precipitation retrieval over land and ocean with the SSM/I: Identification and characteristics of the scattering signal. J. Atmos. Oceanic Technol., 6, 254273, doi:10.1175/1520-0426(1989)006<0254:PROLAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., 2014: Significant improvements in hurricane intensity forecasts from NCEP/EMC operational high-resolution HWRF modeling system. 68th Interdepartmental Hurricane Conf., College Park, MD, Federal Coordinator for Meteorology, S4-02. [Available online at http://www.ofcm.gov/ihc14/presentations/Session4/s04-02tallapragada.pdf.]

  • Vigh, J. L., and Schubert W. H. , 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, doi:10.1175/2009JAS3092.1.

    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., Knaff J. A. , and Schubert W. H. , 2012: A climatology of hurricane eye formation. Mon. Wea. Rev., 140, 14051426, doi:10.1175/MWR-D-11-00108.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and Wang Y. , 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 2948, doi:10.1175/MWR-D-13-00070.1.

    • Search Google Scholar
    • Export Citation
  • Weng, F., and Grody N. C. , 1994: Retrieval of cloud liquid water using the Special Sensor Microwave Imager (SSM/I). J. Geophys. Res., 99, 25 53525 551, doi:10.1029/94JD02304.

    • Search Google Scholar
    • Export Citation
  • Wiebe, H., Heygster G. , and Meyer-Lerbs L. , 2008: Geolocation of AMSR-E data. IEEE Trans. Geosci. Remote Sens., 46, 30983103, doi:10.1109/TGRS.2008.919272.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Int. Geophysics Series, Vol. 91, Academic Press, 627 pp.

  • Wimmers, A. J., and Velden C. S. , 2010: Objectively determining the rotational center of tropical cyclones in passive microwave satellite imagery. J. Appl. Meteor. Climatol., 49, 20132034, doi:10.1175/2010JAMC2490.1.

    • Search Google Scholar
    • Export Citation
  • Zagrodnik, J. P., and Jiang H. , 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 27892809, doi:10.1175/JAS-D-13-0314.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 537 149 22
PDF Downloads 416 99 17