Improvement of Statistical Postprocessing Using GEFS Reforecast Information

Hong Guan NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland, and System Research Group, Inc., Colorado Springs, Colorado

Search for other papers by Hong Guan in
Current site
Google Scholar
PubMed
Close
,
Bo Cui NOAA/NWS/NCEP/Environmental Modeling Center, and I. M. Systems Group, Inc., College Park, Maryland

Search for other papers by Bo Cui in
Current site
Google Scholar
PubMed
Close
, and
Yuejian Zhu NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

Search for other papers by Yuejian Zhu in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) generated a multidecadal (from 1985 to present) ensemble reforecast database for the 2012 version of the Global Ensemble Forecast System (GEFS). This dataset includes 11-member reforecasts initialized once per day at 0000 UTC. This GEFS version has a strong cold bias for winter and warm bias for summer in the Northern Hemisphere. Although the operational decaying average bias-correction approach performs well in winter and summer, it sometimes fails during the spring and fall transition seasons at long lead times (>~5 days). In this paper, 24- (1985–2008) and 25-yr (1985–2009) reforecast biases are used to calibrate 2-m temperature forecasts in 2009 and 2010, respectively. The reforecast-calibrated forecasts for both years are more accurate than those adjusted by the decaying average method during transition seasons. A long training period (>5 yr) is necessary to help avoid a large impact on bias correction from an extreme year case and keep a broader diversity of weather scenarios. The improvement from using the full 25-yr, 31-day window, weekly training dataset is almost equivalent to that from using daily training samples. This provides an option to reduce computational expenses while maintaining a desired accuracy. To provide the potential to improve forecast accuracy for transition seasons, reforecast information is added into the current operational bias-correction method. The relative contribution of the two methods is determined by the correlation between the ensemble mean and analysis. This method improves the forecast accuracy for most of the year with a maximum benefit during April–June.

Corresponding author address: Dr. Hong Guan, NOAA/NWS/NCEP/Environmental Modeling Center, 5830 University Research Ct., College Park, MD 20740. E-mail: hong.guan@noaa.gov

Abstract

The National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) generated a multidecadal (from 1985 to present) ensemble reforecast database for the 2012 version of the Global Ensemble Forecast System (GEFS). This dataset includes 11-member reforecasts initialized once per day at 0000 UTC. This GEFS version has a strong cold bias for winter and warm bias for summer in the Northern Hemisphere. Although the operational decaying average bias-correction approach performs well in winter and summer, it sometimes fails during the spring and fall transition seasons at long lead times (>~5 days). In this paper, 24- (1985–2008) and 25-yr (1985–2009) reforecast biases are used to calibrate 2-m temperature forecasts in 2009 and 2010, respectively. The reforecast-calibrated forecasts for both years are more accurate than those adjusted by the decaying average method during transition seasons. A long training period (>5 yr) is necessary to help avoid a large impact on bias correction from an extreme year case and keep a broader diversity of weather scenarios. The improvement from using the full 25-yr, 31-day window, weekly training dataset is almost equivalent to that from using daily training samples. This provides an option to reduce computational expenses while maintaining a desired accuracy. To provide the potential to improve forecast accuracy for transition seasons, reforecast information is added into the current operational bias-correction method. The relative contribution of the two methods is determined by the correlation between the ensemble mean and analysis. This method improves the forecast accuracy for most of the year with a maximum benefit during April–June.

Corresponding author address: Dr. Hong Guan, NOAA/NWS/NCEP/Environmental Modeling Center, 5830 University Research Ct., College Park, MD 20740. E-mail: hong.guan@noaa.gov
Save
  • Bishop, C. H., and Shanley K. T. , 2008: Bayesian model averaging’s problematic treatment of extreme weather and a paradigm shift that fixes it. Mon. Wea. Rev., 136, 46414652, doi:10.1175/2008MWR2565.1.

    • Search Google Scholar
    • Export Citation
  • Candille, G., 2009: The multiensemble approach: The NAEFS example. Mon. Wea. Rev., 137, 16551665, doi:10.1175/2008MWR2682.1.

  • Cheng, W. Y. Y., and Steenburgh W. J. , 2007: Strengths and weaknesses of MOS, running-mean bias removal, and Kalman filter techniques for improving model forecasts over the western United States. Wea. Forecasting, 22, 13041318, doi:10.1175/2007WAF2006084.1.

    • Search Google Scholar
    • Export Citation
  • Cui, B., Toth Z. , Zhu Y. , and Hou D. , 2012: Bias correction for global ensemble forecast. Wea. Forecasting, 27, 396410, doi:10.1175/WAF-D-11-00011.1.

    • Search Google Scholar
    • Export Citation
  • Friederichs, P., and Thorarinsdottir T. , 2012: Forecast verification scores for extreme value distributions with an application to peak wind prediction. Environmetrics, 23, 579594, doi:10.1002/env.2176.

    • Search Google Scholar
    • Export Citation
  • Glahn, B., 2014: Determining an optimal decay factor for bias-correcting MOS temperature and dewpoint forecasts. Wea. Forecasting, 29, 10761090, doi:10.1175/WAF-D-13-00123.1.

    • Search Google Scholar
    • Export Citation
  • Glahn, B., Peroutka M. , Wiedenfeld J. , Wagner J. , Zylstra G. , Schuknecht B. , and Jackson B. , 2009: MOS uncertainty estimates in an ensemble framework. Mon. Wea. Rev., 137, 246268, doi:10.1175/2008MWR2569.1.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., Raftery A. E. , Westveld A. H. , and Goldman T. , 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, doi:10.1175/MWR2904.1.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., Hamill T. M. , and Whitaker S. J. , 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part I: Two-meter temperatures. Mon. Wea. Rev., 136, 26082619, doi:10.1175/2007MWR2410.1.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., Buizza R. , Hamill T. M. , Leutbecher M. , and Palmer T. N. , 2012: Comparing TIGGE multimodel forecasts with reforecast-calibrated ECMWF ensemble forecasts. Quart. J. Roy. Meteor. Soc., 138, 18141827, doi:10.1002/qj.1895.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Whitaker J. S. , 2007: Ensemble calibration of 500-hPa geopotential height and 850-hPa and 2-m temperatures using reforecasts. Mon. Wea. Rev., 135, 32733280, doi:10.1175/MWR3468.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., Whitaker J. S. , and Wei X. , 2004: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132, 14341447, doi:10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., Whitaker J. S. , and Mullen S. L. , 2006: Reforecasts: An important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 3346, doi:10.1175/BAMS-87-1-33.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., Bates G. T. , Whitaker J. S. , Murray D. R. , Fiorino M. , Galarneau T. J. Jr., Zhu Y. , and Lapenta W. , 2013: NOAA’s second-generation global medium-range ensemble reforecast data set. Bull. Amer. Meteor. Soc., 94, 15531565, doi:10.1175/BAMS-D-12-00014.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Coauthors, 2014: A recommended reforecast configuration for the NCEP global ensemble forecast system. NOAA White paper, 24 pp, accessed 9 June 2015. [Available online at http://www.esrl.noaa.gov/psd/people/tom.hamill/White-paper-reforecast-configuration.pdf.]

  • Hou, D., Toth Z. , Zhu Y. , and Yang W. , 2008: Evaluation of the impact of the stochastic perturbation schemes on global ensemble forecast. Proc. 19th Conf. on Probability and Statistics, New Orleans, LA, Amer. Meteor. Soc. [Available online at https://ams.confex.com/ams/88Annual/webprogram/Paper134165.html.]

  • Monache, L. D., Nipen T. , Liu Y. , Roux G. , and Stull R. , 2011: Kalman filter and analog schemes to postprocess numerical weather predictions. Mon. Wea. Rev., 139, 35543570, doi:10.1175/2011MWR3653.1.

    • Search Google Scholar
    • Export Citation
  • Monache, L. D., Eckel F. A. , Rife D. L. , Nagarajan B. , and Searight K. , 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 34983516, doi:10.1175/MWR-D-12-00281.1.

    • Search Google Scholar
    • Export Citation
  • Raftery, A. E., Gneiting T. , Balabdaoui F. , and Polakowski M. , 2005: Using Bayesian model averaging to calibrate forecast ensembles. Mon. Wea. Rev., 133, 11551174, doi:10.1175/MWR2906.1.

    • Search Google Scholar
    • Export Citation
  • Roulston, M. S., and Smith L. A. , 2003: Combining dynamical and statistical ensembles. Tellus, 55A, 1630, doi:10.1034/j.1600-0870.2003.201378.x.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, doi:10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319, doi:10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., Talagrand O. , Candille G. , and Zhu Y. , 2003: Probability and ensemble forecasts. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, I. T. Jolliffe and D. B. Stephenson, Eds., John Wiley and Sons, 137–163.

  • Wagner, J., and Glahn B. , 2010: Ensemble MOS forecasts from multiple models. Preprints, 20th Conf. on Probability and Statistics in the Atmospheric Sciences, GA, Amer. Meteor. Soc., 7.5. [Available online at https://ams.confex.com/ams/pdfpapers/156479.pdf.]

  • Wang, X., and Bishop C. H. , 2005: Improvement of ensemble reliability with a new dressing kernel. Quart. J. Roy. Meteor. Soc., 131, 965986, doi:10.1256/qj.04.120.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Toth Z. , Wobus R. , and Zhu Y. , 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, doi:10.1111/j.1600-0870.2007.00273.x.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2d ed. Academic Press, 627 pp.

  • Wilks, D. S., and Hamill T. M. , 2007: Comparison of ensemble-MOS methods using GFS reforecasts. Mon. Wea. Rev., 135, 23792390, doi:10.1175/MWR3402.1.

    • Search Google Scholar
    • Export Citation
  • Wilson, L. J., Beauregard S. , Raftery A. E. , and Verret R. , 2007: Calibrated surface temperature forecasts from the Canadian Ensemble Prediction System using Bayesian model averaging. Mon. Wea. Rev., 135, 13641385, doi:10.1175/MWR3347.1.

    • Search Google Scholar
    • Export Citation
  • Yuan, H., Gao X. , Mullen S. L. , Sorooshian S. , Du J. , and Juang H. H. , 2007: Calibration of probabilistic quantitative precipitation forecasts with an artificial neural network. Wea. Forecasting, 22, 12871303, doi:10.1175/2007WAF2006114.1.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y., and Toth Z. , 2008: Ensemble based probabilistic verification. Preprints, 19th Conf. on Predictability and Statistics, New Orleans, LA, Amer. Meteor. Soc., 2.2. [Available online at https://ams.confex.com/ams/pdfpapers/131645.pdf.]

  • Zhu, Y., Wobus R. , Wei M. , Cui B. , and Toth Z. , 2007: March 2007 NAEFS upgrade. NOAA/NCEP/EMC, accessed 9 June 2015. [Available online at http://www.emc.ncep.noaa.gov/gmb/ens/ens_imp_news.html.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 896 339 126
PDF Downloads 415 83 1