On the Impact of NWP Model Background on Very High–Resolution Analyses in Complex Terrain

Alexander Kann Central Institute for Meteorology and Geodynamics, Vienna, Austria

Search for other papers by Alexander Kann in
Current site
Google Scholar
PubMed
Close
,
Christoph Wittmann Central Institute for Meteorology and Geodynamics, Vienna, Austria

Search for other papers by Christoph Wittmann in
Current site
Google Scholar
PubMed
Close
,
Benedikt Bica Central Institute for Meteorology and Geodynamics, Vienna, Austria

Search for other papers by Benedikt Bica in
Current site
Google Scholar
PubMed
Close
, and
Clemens Wastl Central Institute for Meteorology and Geodynamics, Vienna, Austria

Search for other papers by Clemens Wastl in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The capability to accurately analyze the spatial distribution of temperature and wind at very high spatial (2.5–1 km) and temporal (60–5 min) resolutions is of interest in many modern techniques (e.g., nowcasting and statistical downscaling). In addition to observational data, the generation of such analyses requires background information to adequately resolve nonstatic, small-scale phenomena. Numerical weather prediction (NWP) models are of continuously increasing skill and are more capable of providing valuable information on convection-resolving scales. The present paper discusses the impact of two operational NWP models on hourly 2-m temperature and 10-m wind analyses as created by the Integrated Nowcasting through Comprehensive Analysis (INCA) system, which includes a topographic downscaling procedure. The NWP models used for this study are a revised version of ARPEGE–ALADIN (ALARO; 4.8-km resolution) and the Applications of Research to Operations at Mesoscale (AROME; 2.5-km resolution). Based on a case study and a longer-term validation, it is shown that, generally, the finer the grid spacing of the background model and the higher the resolution of the target grid in the downscaling procedure, the slightly more accurate is the analysis. This is especially true for wind analyses in mountainous regions, where a realistic simulation of topographic effects is crucial. In the case of 2-m temperature, the impact is less pronounced, but the topographic downscaling at very high resolution at least adds detail in complex terrain. However, in the vicinity of station observations, the analysis algorithm is capable of spatially adjusting the larger biases found in the ALARO model while having a lesser effect on the downscaled AROME model.

Corresponding author address: Alexander Kann, Central Institute for Meteorology and Geodynamics, Hohe Warte 38, A-1190 Vienna, Austria. E-mail: alexander.kann@zamg.ac.at

Abstract

The capability to accurately analyze the spatial distribution of temperature and wind at very high spatial (2.5–1 km) and temporal (60–5 min) resolutions is of interest in many modern techniques (e.g., nowcasting and statistical downscaling). In addition to observational data, the generation of such analyses requires background information to adequately resolve nonstatic, small-scale phenomena. Numerical weather prediction (NWP) models are of continuously increasing skill and are more capable of providing valuable information on convection-resolving scales. The present paper discusses the impact of two operational NWP models on hourly 2-m temperature and 10-m wind analyses as created by the Integrated Nowcasting through Comprehensive Analysis (INCA) system, which includes a topographic downscaling procedure. The NWP models used for this study are a revised version of ARPEGE–ALADIN (ALARO; 4.8-km resolution) and the Applications of Research to Operations at Mesoscale (AROME; 2.5-km resolution). Based on a case study and a longer-term validation, it is shown that, generally, the finer the grid spacing of the background model and the higher the resolution of the target grid in the downscaling procedure, the slightly more accurate is the analysis. This is especially true for wind analyses in mountainous regions, where a realistic simulation of topographic effects is crucial. In the case of 2-m temperature, the impact is less pronounced, but the topographic downscaling at very high resolution at least adds detail in complex terrain. However, in the vicinity of station observations, the analysis algorithm is capable of spatially adjusting the larger biases found in the ALARO model while having a lesser effect on the downscaled AROME model.

Corresponding author address: Alexander Kann, Central Institute for Meteorology and Geodynamics, Hohe Warte 38, A-1190 Vienna, Austria. E-mail: alexander.kann@zamg.ac.at
Save
  • Bénard, P., Vivoda J. , Masek J. , Smolikova P. , Yessad K. , Smith C. , Brozkova R. , and Geleyn J. F. , 2010: Dynamical kernel of the Aladin-NH spectral limited-area model: Formulation and sensitivity experiments. Quart. J. Roy. Meteor. Soc., 136A, 155169, doi:10.1002/qj.522.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., and Courtier P. , 1999: Data assimilation concepts and methods. ECMWF Lecture Notes, 59 pp. [Available online at http://www.ecmwf.int/sites/default/files/Data%20assimilation%20concepts%20and%20methods.pdf.]

  • Chumchean, S., Sharma A. , and Seed A. , 2006: An integrated approach to error correction for real-time radar-rainfall estimation. J. Atmos. Oceanic Technol., 23, 6779, doi:10.1175/JTECH1832.1.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., 1997: Dual formulation of four-dimensional variational assimilation. Quart. J. Roy. Meteor. Soc., 123, 24492461, doi:10.1002/qj.49712354414.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., Thépaut J. N. , and Hollingsworth A. , 1994: A strategy for operational implementation of 4D-VAR, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, doi:10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., and Coauthors, 1998: The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: Formulation. Quart. J. Roy. Meteor. Soc., 124, 17831807, doi:10.1002/qj.49712455002.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., Bougeault P. , and Redelsperger J. L. , 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, doi:10.1002/qj.49712656202.

    • Search Google Scholar
    • Export Citation
  • Daley, R., 1991: Atmospheric Data Analysis. Cambridge Atmospheric and Space Science Series, Cambridge University Press, 457 pp.

  • De Pondeca, M. S. F. V., and Coauthors, 2011: The Real-Time Mesoscale Analysis at NOAA’s National Centers for Environmental Prediction: Current status and development. Wea. Forecasting, 26, 593612, doi:10.1175/WAF-D-10-05037.1.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., and Wiener G. , 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797, doi:10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., Janowiak J. E. , and Kidd C. , 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 2009: Data Assimilation: The Ensemble Kalman Filter. Springer, 320 pp.

  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

  • Geleyn, J. F., Catry B. , Bouteloup Y. , and Brožková R. , 2008: A statistical approach for sedimentation inside a microphysical precipitation scheme. Tellus, 60A, 649662, doi:10.1111/j.1600-0870.2008.00323.x.

    • Search Google Scholar
    • Export Citation
  • Gerard, L., 2007: An integrated package for subgrid convection, clouds and precipitation compatible with the meso-gamma scales. Quart. J. Roy. Meteor. Soc., 133, 711730, doi:10.1002/qj.58.

    • Search Google Scholar
    • Export Citation
  • Gerard, L., and Geleyn J. F. , 2005: Evolution of a subgrid deep convection parametrization in a limited-area model with increasing resolution. Quart. J. Roy. Meteor. Soc., 131B, 22932312, doi:10.1256/qj.04.72.

    • Search Google Scholar
    • Export Citation
  • Gerard, L., Piriou J. M. , Brozkova R. , Geleyn J. F. , and Banciu D. , 2009: Cloud and precipitation parameterization in a meso-gamma scale operational weather prediction model. Mon. Wea. Rev., 137, 39603977, doi:10.1175/2009MWR2750.1.

    • Search Google Scholar
    • Export Citation
  • Gohm, A., and Mayr G. , 2004: Hydraulic aspects of foehn winds in an Alpine valley. Quart. J. Roy. Meteor. Soc., 130, 449480, doi:10.1256/qj.03.28.

    • Search Google Scholar
    • Export Citation
  • Gohm, A., Mayr G. , and Zängl G. , 2004: South foehn in the Wipp valley on 24 October 1999 (MAP IOP 10): Verification of high-resolution numerical simulations with observations. Mon. Wea. Rev., 132, 78102, doi:10.1175/1520-0493(2004)132<0078:SFITWV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goudenhoofdt, E., and Delobbe L. , 2009: Evaluation of radar-gauge merging methods for quantitative precipitation estimates. Hydrol. Earth Syst. Sci., 13, 195203, doi:10.5194/hess-13-195-2009.

    • Search Google Scholar
    • Export Citation
  • Gregow, E., Saltikoff E. , Albers S. , and Hohti H. , 2013: Precipitation accumulation analysis—Assimilation of radar–gauge measurements and validation of different methods. Hydrol. Earth Syst. Sci., 17, 41094120, doi:10.5194/hess-17-4109-2013.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., Hamill T. M. , and Whitaker J. S. , 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part I: Temperature. Mon. Wea. Rev., 136, 26082619, doi:10.1175/2007MWR2410.1.

    • Search Google Scholar
    • Export Citation
  • Haiden, T., Kann A. , Wittmann C. , Pistotnik G. , Bica B. , and Gruber C. , 2011: The Integrated Nowcasting through Comprehensive Analysis (INCA) system and its validation over the eastern Alpine region. Wea. Forecasting, 26, 166183, doi:10.1175/2010WAF2222451.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., Whitaker J. S. , and Wei X. , 2004: Ensemble reforecasting: Improving medium-range forecast skill using retrospective forecasts. Mon. Wea. Rev., 132, 14341447, doi:10.1175/1520-0493(2004)132<1434:ERIMFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., Whitaker J. S. , and Mullen S. L. , 2006: Reforecasts: An important dataset for improving weather predictions. Bull. Amer. Meteor. Soc., 87, 3346, doi:10.1175/BAMS-87-1-33.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., Hagedorn R. , and Whitaker J. S. , 2008: Probabilistic forecast calibration using ECMWF and GFS ensemble reforecasts. Part II: Precipitation. Mon. Wea. Rev., 136, 26202632, doi:10.1175/2007MWR2411.1.

    • Search Google Scholar
    • Export Citation
  • Handwerker, J., 2002: Cell tracking with TRACE3D—A new algorithm. Atmos. Res., 61, 1534, doi:10.1016/S0169-8095(01)00100-4.

  • Huang, L. X., Isaac G. A. , and Sheng G. , 2012: Integrating NWP forecasts and observation data to improve nowcasting accuracy. Wea. Forecasting, 27, 938953, doi:10.1175/WAF-D-11-00125.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.

  • Kann, A., Wittmann C. , Wang Y. , and Ma X. , 2009: Calibrating 2-m temperature of limited-area ensemble forecasts using high-resolution analysis. Mon. Wea. Rev., 137, 33733387, doi:10.1175/2009MWR2793.1.

    • Search Google Scholar
    • Export Citation
  • Kuligowski, R. J., Li Y. , and Zhang Y. , 2013: Impact of TRMM data on a low-latency, high-resolution precipitation algorithm for flash flood forecasting. J. Appl. Meteor. Climatol., 52, 13791393, doi:10.1175/JAMC-D-12-0107.1.

    • Search Google Scholar
    • Export Citation
  • Kyznarová, H., and Novák P. , 2009: CELLTRACK—Convective cell tracking algorithm and its use for deriving life cycle characteristics. Atmos. Res., 93, 317327, doi:10.1016/j.atmosres.2008.09.019.

    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., and Coauthors, 1998: The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90109, doi:10.1007/s00585-997-0090-6.

    • Search Google Scholar
    • Export Citation
  • Li, L., Schmid W. , and Joss J. , 1995: Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl. Meteor., 34, 12861300, doi:10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 11771194, doi:10.1002/qj.49711247414.

    • Search Google Scholar
    • Export Citation
  • Masson, V., and Seity Y. , 2009: Including atmospheric layers in vegetation and urban offline surface schemes. J. Appl. Meteor. Climatol., 48, 13771397, doi:10.1175/2009JAMC1866.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J. J., 1991: Radiation and cloud radiative properties in the ECMWF operational weather forecast model. J. Geophys. Res., 96, 91219132, doi:10.1029/89JD01597.

    • Search Google Scholar
    • Export Citation
  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Novák, P., 2007: The Czech Hydrometeorological Institute’s severe storm nowcasting system. Atmos. Res., 83, 450457, doi:10.1016/j.atmosres.2005.09.014.

    • Search Google Scholar
    • Export Citation
  • Overeem, A., Holleman I. , and Buishand A. , 2009: Derivation of a 10-year radar-based climatology of rainfall. J. Appl. Meteor. Climatol., 48, 14481463, doi:10.1175/2009JAMC1954.1.

    • Search Google Scholar
    • Export Citation
  • Pergaud, J., Masson V. , Malardel S. , and Couvreux F. , 2009: A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Bound.-Layer Meteor., 132, 83106, doi:10.1007/s10546-009-9388-0.

    • Search Google Scholar
    • Export Citation
  • Pinty, J. P., and Jabouille P. , 1998: A mixed-phased cloud parameterization for use in a mesoscale non-hydrostatic model: Simulations of a squall line and of orographic precipitation. Preprints, Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 217–220.

  • Ritter, B., and Geleyn J. F. , 1992: A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303325, doi:10.1175/1520-0493(1992)120<0303:ACRSFN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Scofield, R. A., and Kuligowski R. J. , 2003: Status and outlook of operational satellite precipitation algorithms for extreme-precipitation events. Wea. Forecasting, 18, 10371051, doi:10.1175/1520-0434(2003)018<1037:SAOOOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seity, Y., Brousseau P. , Malardel S. , Hello G. , Bénard P. , Bouttier F. , Lac C. , and Masson V. , 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Search Google Scholar
    • Export Citation
  • Steppeler, J., Bitzer H. W. , Minotte M. , and Bonaventura L. , 2002: Nonhydrostatic atmospheric modeling using a z-coordinate representation. Mon. Wea. Rev., 130, 21432149, doi:10.1175/1520-0493(2002)130<2143:NAMUAZ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • U.S. Geological Survey, 2014: Providing science and imagery to better understand our Earth. Earth Resources Observation and Science (EROS) Center, accessed 15 October 2014. [Available online at http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30_info.]

  • Váňa, F., Bénard P. , Geleyn J. F. , Simon A. , and Seity Y. , 2008: Semi-Lagrangian advection scheme with controlled damping: An alternative to nonlinear horizontal diffusion in a numerical weather prediction model. Quart. J. Roy. Meteor. Soc., 134, 523537, doi:10.1002/qj.220.

    • Search Google Scholar
    • Export Citation
  • Vergeiner, I., Steinacker R. , and Dreiseitl E. , 1983: The south foehn case 4/5 May 1982: Fine-scale pressure and wind analyses in the Inntal and Wipptal. GARP-Alpex Publ. 7, 256 pp.

  • Wang, Y., Haiden T. , and Kann A. , 2006: The operational Limited Area Modelling system at ZAMG: ALADIN-AUSTRIA. Österreichische Beiträge zu Meteorologie und Geophysik, Vol. 37, 33 pp.

  • Zängl, G., 2003: Deep and shallow south foehn in the region of Innsbruck: Typical features and semi-idealized numerical simulations. Meteor. Atmos. Phys., 83, 237261.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1109 374 39
PDF Downloads 264 93 20