Extended-Range Forecasts of Areal-Averaged Rainfall over Saudi Arabia

Michael K. Tippett Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, and Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by Michael K. Tippett in
Current site
Google Scholar
PubMed
Close
,
Mansour Almazroui Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by Mansour Almazroui in
Current site
Google Scholar
PubMed
Close
, and
In-Sik Kang School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea, and Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, Jeddah, Saudi Arabia

Search for other papers by In-Sik Kang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The climate of Saudi Arabia is arid–semiarid with infrequent but sometimes intense rainfall, which can cause flooding. Interannual and intraseasonal precipitation variability in the region is related to ENSO and MJO tropical convection. The predictability of these tropical signals gives some expectation of skillful extended-range rainfall forecasts in the region. Here, the extent to which this predictability is realizable in the Climate Forecast System (CFS), version 2, a state-of-the-art coupled global ocean–atmosphere model, is assessed. While there are deficiencies in the forecast climatology likely related to orography and resolution, as well as lead-dependent biases, CFS represents the climatology of the region reasonably well. Forecasts of the areal average of rainfall over Saudi Arabia show that the CFS captures some features of a spring 2013 heavy rainfall event up to 10 days in advance and a transition from dry to wet conditions up to 20 days in advance. Analysis of a 12-yr (1999–2010) reforecast dataset shows that the CFS can skillfully predict the rainfall amount, the number of days exceeding a threshold, and the probability of heavy rainfall occurrence for forecast windows ranging from 1 to 30 days. While the probability forecasts show good discrimination, they are overconfident. Logistic regression based on the ensemble mean value improves forecast skill and reliability. Forecast probabilities have a clear relation with the MJO phase in the wet season, providing a physical basis for the observed forecast skill.

Denotes Open Access content.

Corresponding author address: M. K. Tippett, Dept. of Applied Physics and Applied Mathematics, Columbia University, Mail Code 4701, New York, NY 10027. E-mail: tippett@iri.columbia.edu

Abstract

The climate of Saudi Arabia is arid–semiarid with infrequent but sometimes intense rainfall, which can cause flooding. Interannual and intraseasonal precipitation variability in the region is related to ENSO and MJO tropical convection. The predictability of these tropical signals gives some expectation of skillful extended-range rainfall forecasts in the region. Here, the extent to which this predictability is realizable in the Climate Forecast System (CFS), version 2, a state-of-the-art coupled global ocean–atmosphere model, is assessed. While there are deficiencies in the forecast climatology likely related to orography and resolution, as well as lead-dependent biases, CFS represents the climatology of the region reasonably well. Forecasts of the areal average of rainfall over Saudi Arabia show that the CFS captures some features of a spring 2013 heavy rainfall event up to 10 days in advance and a transition from dry to wet conditions up to 20 days in advance. Analysis of a 12-yr (1999–2010) reforecast dataset shows that the CFS can skillfully predict the rainfall amount, the number of days exceeding a threshold, and the probability of heavy rainfall occurrence for forecast windows ranging from 1 to 30 days. While the probability forecasts show good discrimination, they are overconfident. Logistic regression based on the ensemble mean value improves forecast skill and reliability. Forecast probabilities have a clear relation with the MJO phase in the wet season, providing a physical basis for the observed forecast skill.

Denotes Open Access content.

Corresponding author address: M. K. Tippett, Dept. of Applied Physics and Applied Mathematics, Columbia University, Mail Code 4701, New York, NY 10027. E-mail: tippett@iri.columbia.edu
Save
  • Abdullah, M. A., and Al-Mazroui M. A. , 1998: Climatological study of the southwestern region of Saudi Arabia. I. Rainfall analysis. Climate Res., 9, 213223, doi:10.3354/cr009213.

    • Search Google Scholar
    • Export Citation
  • Almazroui, M., 2006: The relationships between atmospheric circulation patterns and surface climatic elements in Saudi Arabia. Ph.D. thesis, Climatic Research Unit, University of East Anglia, Norwich, United Kingdom, 432 pp.

  • Almazroui, M., 2011a: Calibration of TRMM rainfall climatology over Saudi Arabia during 1998–2009. Atmos. Res., 99, 400414, doi:10.1016/j.atmosres.2010.11.006.

    • Search Google Scholar
    • Export Citation
  • Almazroui, M., 2011b: Sensitivity of a regional climate model on the simulation of high intensity rainfall events over the Arabian Peninsula and around Jeddah (Saudi Arabia). Theor. Appl. Climatol., 104, 261276, doi:10.1007/s00704-010-0387-3.

    • Search Google Scholar
    • Export Citation
  • Alpert, P., Osetinsky I. , Ziv B. , and Shafir H. , 2004: Semi-objective classification for daily synoptic systems: Application to the eastern Mediterranean climate change. Int. J. Climatol., 24, 10011011, doi:10.1002/joc.1036.

    • Search Google Scholar
    • Export Citation
  • Athar, H., 2015: Teleconnections and variability in observed rainfall over Saudi Arabia during 1978–2010. Atmos. Sci. Lett., doi:10.1002/asl2.570, in press.

  • Barlow, M., 2012: Africa and West Asia. Intraseasonal Variability in the Atmosphere–Ocean Climate System, W. K.-M. Lau and D. E. Waliser, Eds., 2nd ed., Springer-Verlag, 477–495.

  • Barlow, M., Wheeler M. , Lyon B. , and Cullen H. , 2005: Modulation of daily precipitation over southwest Asia by the Madden–Julian oscillation. Mon. Wea. Rev., 133, 35793594, doi:10.1175/MWR3026.1.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., and Tippett M. K. , 2013: Predictions of Nino3.4 SST in CFSv1 and CFSv2: A diagnostic comparison. Climate Dyn., 41, 16151633, doi:10.1007/s00382-013-1845-2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., Tippett M. K. , L’Heureux M. L. , Li S. , and DeWitt D. G. , 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631651, doi:10.1175/BAMS-D-11-00111.1.

    • Search Google Scholar
    • Export Citation
  • Chakraborty, A., Behera S. K. , Mujumdar M. , Ohba R. , and Yamagata T. , 2006: Diagnosis of tropospheric moisture over Saudi Arabia and influences of IOD and ENSO. Mon. Wea. Rev., 134, 598617, doi:10.1175/MWR3085.1.

    • Search Google Scholar
    • Export Citation
  • de Vries, A. J., Tyrlis E. , Edry D. , Krichak S. O. , Steil B. , and Lelieveld J. , 2013: Extreme precipitation events in the Middle East: Dynamics of the active Red Sea trough. J. Geophys. Res. Atmos., 118, 70877108, doi:10.1002/jgrd.50569.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., Barlow M. , and Saini R. , 2012: The leading pattern of intraseasonal and interannual Indian Ocean precipitation variability and its relationship with Asian circulation during the boreal cold season. J. Climate, 25, 75097526, doi:10.1175/JCLI-D-11-00572.1.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., Barlow M. , and Saini R. , 2013: Intraseasonal and seasonal-to-interannual Indian Ocean convection and hemispheric teleconnections. J. Climate, 26, 88508867, doi:10.1175/JCLI-D-12-00306.1.

    • Search Google Scholar
    • Export Citation
  • Hoell, A., Funk C. , and Barlow M. , 2014: La Niña diversity and Northwest Indian Ocean Rim teleconnections. Climate Dyn., 43, 27072724, doi:10.1007/s00382-014-2083-y.

    • Search Google Scholar
    • Export Citation
  • Hoffman, R. N., and Kalnay E. , 1983: Lagged average forecasting, an alternative to Monte Carlo forecasting. Tellus, 35A, 100118, doi:10.1111/j.1600-0870.1983.tb00189.x.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. , Bolvin D. , and Nelkiny E. , 2010: The TRMM Multi-Satellite Precipitation Analysis (TMPA). Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer Verlag, 3–22.

  • Johnson, N. C., 2013: How many ENSO flavors can we distinguish? J. Climate,26, 4816–4827, doi:10.1175/JCLI-D-12-00649.1.

  • Jones, C., Waliser D. E. , Lau K. M. , and Stern W. , 2004: Global occurrences of extreme precipitation and the Madden–Julian oscillation: Observations and predictability. J. Climate, 17, 45754589, doi:10.1175/3238.1.

    • Search Google Scholar
    • Export Citation
  • Kang, I.-S., Rashid I. U. , Kucharski F. , Almazroui M. , and Al Khalaf A. A. , 2015: Multidecadal changes in the relationship between ENSO and wet-season precipitation in the Arabian Peninsula. J. Climate, doi:10.1175/JCLI-D-14-00388.1, in press.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., Alpert P. , and Krishnamurti T. N. , 1997a: Interaction of topography and tropospheric flow—A possible generator for the Red Sea trough? Meteor. Atmos. Phys., 63, 149158, doi:10.1007/BF01027381.

    • Search Google Scholar
    • Export Citation
  • Krichak, S. O., Alpert P. , and Krishnamurti T. N. , 1997b: Red Sea trough/cyclone development—Numerical investigation. Meteor. Atmos. Phys., 63, 159169, doi:10.1007/BF01027382.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., and Hartmann D. L. , 1998: Frictional moisture convergence in a composite life cycle of the Madden–Julian oscillation. J. Climate, 11, 23872403, doi:10.1175/1520-0442(1998)011<2387:FMCIAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1973: A new vector partition of the probability score. J. Appl. Meteor., 12, 595600, doi:10.1175/1520-0450(1973)012<0595:ANVPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nazemosadat, M. J., and Ghaedamini H. , 2010: On the relationships between the Madden–Julian oscillation and precipitation variability in southern Iran and the Arabian Peninsula: Atmospheric circulation analysis. J. Climate, 23, 887904, doi:10.1175/2009JCLI2141.1.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., 1993: Extended-range atmospheric prediction and the Lorenz model. Bull. Amer. Meteor. Soc., 74, 4965, doi:10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27,21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Shukla, J., 1981: Dynamical predictability of monthly means. J. Atmos. Sci., 38, 25472572, doi:10.1175/1520-0469(1981)038<2547:DPOMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., 1998: Predictability in the midst of chaos: A scientific basis for climate forecasting. Science, 282, 728731, doi:10.1126/science.282.5389.728.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., Barnston A. G. , and Li S. , 2012: Performance of recent multimodel ENSO forecasts. J. Appl. Meteor. Climatol., 51, 637654, doi:10.1175/JAMC-D-11-093.1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., Lau K. M. , Stern W. , and Jones C. , 2003: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84, 3350, doi:10.1175/BAMS-84-1-33.

    • Search Google Scholar
    • Export Citation
  • Wang, W., Hung M.-P. , Weaver S. , Kumar A. , and Fu X. , 2014: MJO prediction in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 25092520, doi:10.1007/s00382-013-1806-9.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M. C., and Hendon H. , 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932, doi:10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Q., and van den Dool H. , 2012: Relative merit of model improvement versus availability of retrospective forecasts: The case of climate forecast system MJO prediction. Wea. Forecasting, 27, 10451051, doi:10.1175/WAF-D-11-00133.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 326 163 17
PDF Downloads 148 55 9