The Validity of Dvorak Intensity Change Constraints for Tropical Cyclones

John P. Cangialosi NOAA/NWS/NCEP/National Hurricane Center, Miami, Florida

Search for other papers by John P. Cangialosi in
Current site
Google Scholar
PubMed
Close
,
Todd B. Kimberlain NOAA/NWS/NCEP/National Hurricane Center, Miami, Florida

Search for other papers by Todd B. Kimberlain in
Current site
Google Scholar
PubMed
Close
,
John L. Beven II NOAA/NWS/NCEP/National Hurricane Center, Miami, Florida

Search for other papers by John L. Beven II in
Current site
Google Scholar
PubMed
Close
, and
Mark Demaria NOAA/NWS/NCEP/National Hurricane Center, Miami, Florida

Search for other papers by Mark Demaria in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The Dvorak technique is used operationally worldwide for tropical cyclone intensity analysis. This study tests Dvorak intensity change constraints, using a database of simultaneous aircraft and satellite fixes for tropical cyclones (TCs) in the 1998–2012 period. Results indicate that, in the vast majority of cases, Dvorak intensity constraints are valid with only a small percentage of strengthening TCs violating the constraints. Of the small sample that broke the constraints, most had initial intensities ranging from moderately strong tropical storms to minimal hurricanes.

Corresponding author address: John P Cangialosi, National Hurricane Center, 11691 SW 17th St., Miami, FL 33165. E-mail: john.p.cangialosi@noaa.gov

Abstract

The Dvorak technique is used operationally worldwide for tropical cyclone intensity analysis. This study tests Dvorak intensity change constraints, using a database of simultaneous aircraft and satellite fixes for tropical cyclones (TCs) in the 1998–2012 period. Results indicate that, in the vast majority of cases, Dvorak intensity constraints are valid with only a small percentage of strengthening TCs violating the constraints. Of the small sample that broke the constraints, most had initial intensities ranging from moderately strong tropical storms to minimal hurricanes.

Corresponding author address: John P Cangialosi, National Hurricane Center, 11691 SW 17th St., Miami, FL 33165. E-mail: john.p.cangialosi@noaa.gov
Save
  • Dvorak, V. F., 1972: A technique for the analysis and forecasting of tropical cyclone intensities from satellite pictures. NOAA Tech. Memo. NESS 36, 15 pp.

  • Dvorak, V. F., 1984: Tropical cyclone intensity analysis using satellite data. NOAA Tech. Rep. NESDIS 11, 47 pp.

  • Dvorak, V. F., 1995: A Workbook on Tropical Clouds and Cloud Systems Observed in Satellite Imagery. Vol. 2, NOAA/NESDIS, 359 pp. [Available from NOAA/NESDIS, 5200 Auth Rd., Washington, DC 20333.]

  • Emanuel, K., 2004: Environmental control of tropical cyclone intensity. J. Atmos. Sci., 61, 843858, doi:10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garthwaite, P. H., Jolliffe I. T. , and Jones B. , 2002: Statistical Inference. 2nd ed. Oxford University Press, 328 pp.

  • Jolliffe, I. T., 2007: Uncertainty and inference for verification measures. Wea. Forecasting, 22, 637650, doi:10.1175/WAF989.1.

  • Kaplan, J., and DeMaria M. , 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, doi:10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and Franklin J. L. , 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Lushine, J. B., 1977: A relationship between weakening of tropical cyclone cloud patterns and lessening of wind speed. NOAA Tech. Memo. NESS 85, 12 pp.

  • Malkus, J. S., 1958: Tropical weather disturbances—Why do so few become hurricanes? Weather, 13, 7589, doi:10.1002/j.1477-8696.1958.tb02330.x.

    • Search Google Scholar
    • Export Citation
  • Mundell, D. B., 1990: Prediction of tropical cyclone rapid intensification. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 186 pp.

  • Shapiro, L. J., and Willoughby H. E. , 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378394, doi:10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimate technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc.,87, 1195-120, doi:10.1175/BAMS-87-9-1195.

  • Vigh, J. L., Knaff J. A. , and Schubert W. H. , 2012: A climatology of hurricane eye formation. Mon. Wea. Rev., 140, 14051426, doi:10.1175/MWR-D-11-00108.1.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and Gray W. M. , 1988: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116, 10441056, doi:10.1175/1520-0493(1988)116<1044:TSARBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242264, doi:10.1175/1520-0469(1990)047<0242:TCOTPC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., 1961: A detailed analysis of typhoon formation. J. Meteor. Soc. Japan, 39, 187214.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 51 13
PDF Downloads 93 40 11