• Alexander, C. R., and Wurman J. , 2008: Updated mobile radar climatology of supercell tornado structures and dynamics. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 19.4. [Available online at https://ams.confex.com/ams/pdfpapers/141821.pdf.]

  • Atkins, N. T., Arnott J. M. , Przybylinski R. W. , Wolf R. A. , and Ketcham B. D. , 2004: Vortex structure and evolution within bow echoes. Part I: Single-Doppler and damage analysis of the 29 June 1998 derecho. Mon. Wea. Rev., 132, 22242242, doi:10.1175/1520-0493(2004)132<2224:VSAEWB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bhaduri, B., Bright E. , Coleman P. , and Urban M. L. , 2007: LandScan USA: A high-resolution geospatial and temporal modeling approach for population distribution and dynamics. GeoJournal, 69, 103117, doi:10.1007/s10708-007-9105-9.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., 2004: On the relationship of tornado path length and width to intensity. Wea. Forecasting, 19, 310319, doi:10.1175/1520-0434(2004)019<0310:OTROTP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J., and Donner W. , 2013: The tornado warning process: A review of current research, challenges, and opportunities. Bull. Amer. Meteor. Soc., 94, 17151733, doi:10.1175/BAMS-D-12-00147.1.

    • Search Google Scholar
    • Export Citation
  • Brotzge, J., Nelson S. E. , Thompson R. L. , and Smith B. T. , 2013: Tornado probability of detection and lead time as a function of convective mode and environmental parameters. Wea. Forecasting, 28, 12611276, doi:10.1175/WAF-D-12-00119.1.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., Lemon L. R. , and Burgess D. W. , 1978: Tornado detection by pulsed Doppler radar. Mon. Wea. Rev., 106, 2939, doi:10.1175/1520-0493(1978)106<0029:TDBPDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., Wood V. T. , and Sirmans D. , 2002: Improved tornado detection using simulated and actual WSR-88D data with enhanced resolution. J. Atmos. Oceanic Technol., 19, 17591771, doi:10.1175/1520-0426(2002)019<1759:ITDUSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., Flickinger B. A. , Forren E. , Schultz D. M. , Sirmans D. , Spencer P. L. , Wood V. T. , and Ziegler C. L. , 2005: Improved detection of severe storms using experimental fine-resolution WSR-88D measurements. Wea. Forecasting, 20, 314, doi:10.1175/WAF-832.1.

    • Search Google Scholar
    • Export Citation
  • Burgess, D., and Lemon L. R. , 1991: Characteristics of mesocyclones detected during a NEXRAD test. Preprints, 25th Int. Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 3942.

  • Burgess, D., Donaldson R. J. Jr., and Desrochers P. R. , 1993: Tornado detection and warning by radar. The Tornado: Its Structure, Dynamics, Prediction, and Hazards, Geophys. Monogr., Vol. 79, Amer. Geophys. Union, 203–221.

  • Burgess, D., Magsig M. A. , Wurman J. , Dowell D. C. , and Richardson Y. , 2002: Radar observations of the 3 May 1999 Oklahoma City tornado. Wea. Forecasting, 17, 456471, doi:10.1175/1520-0434(2002)017<0456:ROOTMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Camp, P. J., 2008: Integrating a geographical information system into storm assessment: The southeast Alabama tornado outbreak of 1 March 2007. Preprints, 24th Conf. on Interactive Information Processing Technologies, New Orleans, LA, Amer. Meteor. Soc., P1.4. [Available online at http://ams.confex.com/ams/pdfpapers/134401.pdf.]

  • Chrisman, J. N., 2009: Automated Volume Scan Evaluation and Termination (AVSET): A simple technique to achieve faster volume scan updates. Preprints, 34th Conf. on Radar Meteorology, Williamsbug, VA, Amer. Meteor. Soc., P4.4. [Available online at https://ams.confex.com/ams/pdfpapers/155324.pdf.]

  • Committee on Weather Radar Technology Beyond NEXRAD, 2002: Weather Radar Technology beyond NEXRAD. National Academy Press Tech. Rep., National Research Council, National Academy of Science, 83 pp.

  • Crum, T., Smith S. D. , Chrisman J. N. , Saffle R. E. , Hall R. W. , and Vogt R. J. , 2013: WSR-88D Radar Projects—Update 2013. Proc. 29th Conf. on Environmental Information Processing Technologies, Austin, TX, Amer. Meteor. Soc., 6B.1. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Paper221461.html.]

  • Doswell, C. A., III, 2003: A guide to F-scale damage assessment. NOAA/NWS, Silver Spring, MD, 94 pp. [Available online at http://www.wdtb.noaa.gov/courses/ef-scale/lesson2/FinalNWSF-scaleAssessmentGuide.pdf.]

  • Dowell, D. C., Alexander C. R. , Wurman J. M. , and Wicker L. J. , 2005: Centrifuging of hydrometeors and debris in tornadoes: Radar-reflectivity patterns and wind-measurement errors. Mon. Wea. Rev., 133, 15011524, doi:10.1175/MWR2934.1.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1979: Bootstrap methods: Another look at the jackknife. Ann. Stat., 7, 126, doi:10.1214/aos/1176344552.

  • Eilts, M. D., and Smith S. D. , 1990: Efficient dealiasing of Doppler velocities using local environment constraints. J. Atmos. Oceanic Technol., 7, 118128, doi:10.1175/1520-0426(1990)007<0118:EDODVU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. M., Albo E. D. , Goodrich R. K. , and Peters D. J. , 1994: NASA/NCAR airborne and ground-based wind shear studies. NCAR Final Rep., Contract NCC1-155, 343 pp.

  • Jing, Z., and Wiener G. , 1993: Two-dimensional dealiasing of Doppler velocities. J. Atmos. Oceanic Technol., 10, 798808, doi:10.1175/1520-0426(1993)010<0798:TDDODV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., McGrath K. M. , and Snow J. T. , 2004: Association between NSSL Mesocyclone Detection Algorithm–detected vortices and tornadoes. Wea. Forecasting, 19, 872890, doi:10.1175/1520-0434(2004)019<0872:ABNMDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M., and LaDue J. G. , 2013: Performance of WSR-88D severe storm algorithms in detecting tornadoes using the operational two-dimensional velocity dealiasing algorithm. Preprints, 38th Annual Meeting of the National Weather Association, Charleston, SC, NWA, 9.4. [Available online at http://www.nwas.org/meetings/nwa2013/presentations/9.4.Kingfield_MDATVS.pptx.zip].

  • LaDue, J. G., Ortega K. , Smith B. , Stumpf G. , and Kingfield D. M. , 2012: A comparison of high resolution tornado surveys to Doppler radar observed vortex parameters: 2011–2012 case studies. Preprints, 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., 6.3. [Available online at https://ams.confex.com/ams/26SLS/webprogram/Paper212627.html.]

  • Lakshmanan, V., Smith T. , Stumpf G. J. , and Hondl K. , 2007: The Warning Decision Support System—Integrated Information. Wea. Forecasting, 22, 596612, doi:10.1175/WAF1009.1.

    • Search Google Scholar
    • Export Citation
  • Mahale, V. N., Brotzge J. A. , and Bluestein H. B. , 2014: The advantages of a mixed-band radar network for severe weather operations: A case study of 13 May 2009. Wea. Forecasting, 29, 7898, doi:10.1175/WAF-D-13-00024.1.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817, doi:10.1175/2009BAMS2507.1.

    • Search Google Scholar
    • Export Citation
  • Miller, M. L., Lakshmanan V. , and Smith T. , 2013: An automated method for depicting mesocyclone path and intensities. Wea. Forecasting, 28, 570585, doi:10.1175/WAF-D-12-00065.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, E. D., Vasiloff S. V. , Stumpf G. J. , Witt A. , Eilts M. D. , Johnson J. T. , and Thomas K. W. , 1998: The National Severe Storms Laboratory tornado detection algorithm. Wea. Forecasting, 13, 352366, doi:10.1175/1520-0434(1998)013<0352:TNSSLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2011a: NWS Central Region service assessment: Joplin, Missouri, tornado—May 22, 2011. NOAA, Kansas City, MO, 41 pp. [Available online at http://www.nws.noaa.gov/om/assessments/pdfs/Joplin_tornado.pdf.]

  • NOAA, 2011b: NWS service assessment: The historic tornadoes of April 2011. NOAA, Silver Spring, MD, 76 pp. [Available online at http://www.nws.noaa.gov/om/assessments/pdfs/historic_tornadoes.pdf]

  • NWS, 2007: Storm Data preparation. National Weather Service Instruction 10-1605, 97 pp. [Available online at https://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf.]

  • NWS, 2013: National Weather Service Weather-Ready Nation Roadmap. NOAA/NWS, Silver Spring, MD, 81 pp. [Available online at http://www.nws.noaa.gov/com/weatherreadynation/files/nws_wrn_roadmap_final_april17.pdf.]

  • OFCM, 2006: Doppler radar meteorological observations: Part C: WSR-88D products and algorithms. Federal Meteorological Handbook 11, FCM-H11C-2006, Washington, DC, 390 pp. [Available online at http://www.ofcm.gov/fmh11/fmh11partc/pdf/FMH-11-PartC-April2006.pdf.]

  • Polger, P. D., Goldsmith B. S. , Przywarty R. C. , and Bocchieri J. R. , 1994: National Weather Service warning performance based on the WSR-88D. Bull. Amer. Meteor. Soc., 75, 203214, doi:10.1175/1520-0477(1994)075<0203:NWSWPB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., Thompson R. L. , Brooke H. E. , Dean A. R. , and Elmore K. L. , 2012a: Diagnosis of Conditional Maximum Tornado Damage Probabilities. Proc. 26th Conf. on Severe Local Storms, Nashville, TN, Amer. Meteor. Soc., P2.20. [Available online at https://ams.confex.com/ams/26SLS/webprogram/Paper211807.html.]

  • Smith, B. T., Thompson R. L. , Grams J. S. , and Broyles C. , 2012b: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, doi:10.1175/WAF-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Stumpf, G. J., Witt A. , Mitchell E. D. , Spencer P. L. , Johnson J. T. , Eilts M. D. , Thomas K. W. , and Burgess D. W. , 1998: The National Severe Storms Laboratory Mesocyclone Detection Algorithm for the WSR-88D. Wea. Forecasting, 13, 304326, doi:10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torres, S. M., and Curtis C. D. , 2007: Initial implementation of super-resolution data on the NEXRAD network. Preprints, 23rd Conf. on Information Processing Systems, San Antonio, TX, Amer. Meteor. Soc., 5B.10. [Available online at https://ams.confex.com/ams/pdfpapers/116240.pdf.]

  • Toth, M., Trapp R. J. , Wurman J. , and Kosiba K. A. , 2013: Comparison of mobile-radar measurements of tornado intensity with corresponding WSR-88D measurements. Wea. Forecasting, 28, 418426, doi:10.1175/WAF-D-12-00019.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., and Davies-Jones R. , 1997: Tornadogenesis with and without a dynamic pipe effect. J. Atmos. Sci., 54, 113133, doi:10.1175/1520-0469(1997)054<0113:TWAWAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Mitchell E. D. , Tipton G. A. , Effertz D. W. , Watson A. I. , Andra D. L. Jr., and Magsig M. A. , 1999: Descending and nondescending tornadic vortex signatures detected by WSR-88Ds. Wea. Forecasting, 14, 625639, doi:10.1175/1520-0434(1999)014<0625:DANTVS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Stumpf G. J. , and Manross K. L. , 2005: A reassessment of the percentage of tornadic mesocyclones. Wea. Forecasting, 20, 680687, doi:10.1175/WAF864.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Wheatley D. M. , Atkins N. T. , Przybylinksi R. W. , and Wolf R. , 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, doi:10.1175/WAF925.1.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., Stauffer P. , Lee W. , Atkins N. T. , and Wurman J. , 2012: Finescale structure of the LaGrange, Wyoming, tornado during VORTEX2: GBVTD and photogrammetric analyses. Mon. Wea. Rev., 140, 33973418, doi:10.1175/MWR-D-12-00036.1.

    • Search Google Scholar
    • Export Citation
  • WDTB, 2002: Tornado warning guidance: Spring 2002. Warning Decision Training Branch, 14 pp. [Available online at http://www.wdtb.noaa.gov/modules/twg02/TWG2002.pdf.]

  • Witt, A., Eilts M. D. , Stumpf G. J. , Mitchell E. D. , Johnson J. T. , and Thomas K. W. , 1998: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518, doi:10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witt, A., Brown R. A. , and Jing Z. , 2009: Performance of a new velocity dealiasing algorithm for the WSR-88D. Preprints, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P4.8. [Available online at https://ams.confex.com/ams/pdfpapers/155951.pdf.]

  • Wood, V. T., and Brown R. A. , 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Wea. Forecasting, 12, 928938, doi:10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., Brown R. A. , and Dowell D. C. , 2009: Simulated WSR-88D velocity and reflectivity signatures of numerically modelled tornadoes. J. Atmos. Oceanic Technol., 26, 876893, doi:10.1175/2008JTECHA1181.1.

    • Search Google Scholar
    • Export Citation
  • WSEC, 2006: A recommendation for an enhanced Fujita scale (EF-scale). Wind Science and Engineering Center, Texas Tech University, Lubbock, TX, 95 pp. [Available online at http://www.spc.noaa.gov/faq/tornado/ef-ttu.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 449 317 38
PDF Downloads 262 180 40

The Relationship between Automated Low-Level Velocity Calculations from the WSR-88D and Maximum Tornado Intensity Determined from Damage Surveys

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 Warning Decision Training Division, National Weather Service, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The relationship between automated low-level velocity derived from WSR-88D severe storm algorithms and two groups of tornado intensity were evaluated using a 4-yr climatology of 1975 tornado events spawned from 1655 supercells and 320 quasi-linear convective systems (QLCSs). A comparison of peak velocity from groups of detections from the Mesocyclone Detection Algorithm and Tornado Detection Algorithm for each tornado track found overlapping distributions when discriminating between weak [rated as category 0 or 1 on the enhanced Fujita scale (EF0 and EF1)] and strong (EF2–5) events for both rotational and delta velocities. Dataset thresholding by estimated affected population lowered the range of observed velocities, particularly for weak tornadoes while retaining a greater frequency of events for strong tornadoes. Heidke skill scores for strength discrimination were dependent on algorithm, velocity parameter, population threshold, and convective mode, and varied from 0.23 and 0.66. Bootstrapping the skill scores for each algorithm showed a wide range of low-level velocities (at least 7 m s−1 in width) providing an equivalent optimal skill at discriminating between weak and strong tornadoes. This ultimately limits identification of a single threshold for optimal strength discrimination but the results match closely with larger prior manual studies of low-level velocities.

Corresponding author address: Darrel M. Kingfield, 120 David L. Boren Blvd., Ste. 3923, Norman, OK 73072. E-mail: darrel.kingfield@noaa.gov

Abstract

The relationship between automated low-level velocity derived from WSR-88D severe storm algorithms and two groups of tornado intensity were evaluated using a 4-yr climatology of 1975 tornado events spawned from 1655 supercells and 320 quasi-linear convective systems (QLCSs). A comparison of peak velocity from groups of detections from the Mesocyclone Detection Algorithm and Tornado Detection Algorithm for each tornado track found overlapping distributions when discriminating between weak [rated as category 0 or 1 on the enhanced Fujita scale (EF0 and EF1)] and strong (EF2–5) events for both rotational and delta velocities. Dataset thresholding by estimated affected population lowered the range of observed velocities, particularly for weak tornadoes while retaining a greater frequency of events for strong tornadoes. Heidke skill scores for strength discrimination were dependent on algorithm, velocity parameter, population threshold, and convective mode, and varied from 0.23 and 0.66. Bootstrapping the skill scores for each algorithm showed a wide range of low-level velocities (at least 7 m s−1 in width) providing an equivalent optimal skill at discriminating between weak and strong tornadoes. This ultimately limits identification of a single threshold for optimal strength discrimination but the results match closely with larger prior manual studies of low-level velocities.

Corresponding author address: Darrel M. Kingfield, 120 David L. Boren Blvd., Ste. 3923, Norman, OK 73072. E-mail: darrel.kingfield@noaa.gov
Save