• Atkins, N. T., and Wakimoto R. M. , 1991: Wet microburst activity over the southeastern United States: Implications for forecasting. Wea. Forecasting, 6, 470482, doi:10.1175/1520-0434(1991)006<0470:WMAOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1994a: Applications of the Barnes objective analysis scheme. Part I: Effects of undersampling, wave position, and station randomness. J. Atmos. Oceanic Technol., 11, 14331448, doi:10.1175/1520-0426(1994)011<1433:AOTBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1994b: Applications of the Barnes objective analysis scheme. Part II: Improving derivative estimates. J. Atmos. Oceanic Technol., 11, 14491458, doi:10.1175/1520-0426(1994)011<1449:AOTBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, S. L., 1994c: Applications of the Barnes objective analysis scheme. Part III: Tuning for minimum error. J. Atmos. Oceanic Technol., 11, 14591479, doi:10.1175/1520-0426(1994)011<1459:AOTBOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Brandes, E. A., and Ryzhkov A. V. , 2004: Hail detection with polarimetric radar. Preprints, 11th Conf. on Aviation, Range, and Aerospace Meteorology, Hyannis, MA, Amer. Meteor. Soc., P5.10. [Available online at https://ams.confex.com/ams/pdfpapers/82033.pdf.]

  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Brock, F. V., Crawford K. C. , Elliott R. L. , Cuperus G. W. , Stadler S. J. , Johnson H. L. , and Eilts M. D. , 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, doi:10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Byers, H. R., and Braham R. R. Jr., 1949: The Thunderstorm. U.S. Government Printing Office, 297 pp.

  • Caracena, F., and Flueck J. A. , 1988: Classifying and forecasting microburst activity in the Denver area. J. Aircr., 25, 525530, doi:10.2514/3.45617.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and Schultz D. M. , 2006: On the use of indices and parameters in forecasting severe storms. Electron. J. Severe Storms Meteor., 1 (3). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewarticle/11/12.]

    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., 1989: Environmental conditions associated with the Dallas microburst storm determined from satellite soundings. Wea. Forecasting, 4, 469484, doi:10.1175/1520-0434(1989)004<0469:ECAWTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ellrod, G. P., Bottos L. , Nelson J. P. , Roeder W. P. , and Witiw M. R. , 2000: Experimental GOES sounder products for the assessment of downburst potential. Wea. Forecasting, 15, 527542, doi:10.1175/1520-0434(2000)015<0527:EGSPFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1978: Manual of downburst identification for Project NIMROD. Satellite and Mesometeorology Research Paper 156, University of Chicago, 104 pp.

  • Fujita, T. T., 1985: The downburst, microburst and macroburst. Satellite and Mesometeorology Research Paper 210, University of Chicago, 122 pp.

  • Fujita, T. T., and Byers H. R. , 1977: Spearhead echo and downburst in the crash of an airliner. Mon. Wea. Rev., 105, 129146, doi:10.1175/1520-0493(1977)105<0129:SEADIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • James, R. P., and Markowski P. M. , 2010: A numerical investigation of the effects of dry air aloft on deep convection. Mon. Wea. Rev., 138, 140161, doi:10.1175/2009MWR3018.1.

    • Search Google Scholar
    • Export Citation
  • Johns, R. H., and Doswell C. A. , 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, doi:10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., 1989: Numerical simulation of low-level downdraft initiation within precipitating cumulonimbi: Some preliminary results. Mon. Wea. Rev., 117, 15171529, doi:10.1175/1520-0493(1989)117<1517:NSOLLD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., 1996: Structure and evolution of a long-lived, microburst-producing storm. Mon. Wea. Rev., 124, 27852806, doi:10.1175/1520-0493(1996)124<2785:SAEOAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Li J. , Menzel W. P. , Schmit T. J. , Nelson J. P. III, Daniels J. , and Ackerman S. A. , 2008: GOES sounding improvement and applications to severe storm nowcasting. Geophys. Res. Lett., 35, L03806, doi:10.1029/2007GL032797.

    • Search Google Scholar
    • Export Citation
  • Lowry, R., 2014: Concepts and Applications of Inferential Statistics. [Available online at http://vassarstats.net/textbook/.]

  • Menzel, W. P., Holt F. , Schmit T. , Aune R. , Schreiner A. , Wade G. , and Gray D. , 1998: Application of GOES-8/9 soundings to weather forecasting and nowcasting. Bull. Amer. Meteor. Soc., 79, 20592077, doi:10.1175/1520-0477(1998)079<2059:AOGSTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • National Transportation Safety Board, 2006: Capsizing of U.S. small passenger vessel Lady D, Northwest Harbor, Baltimore, Maryland March 6, 2004. Marine Accident Rep. NTSB/MAR-06/01, 114 pp. [Available online at http://www.ntsb.gov/investigations/AccidentReports/Reports/MAR0601.pdf.]

  • Pryor, K. L., 2010: Recent developments in microburst nowcasting using GOES. Proc. 17th Conf. on Satellite Meteorology and Oceanography, Annapolis, MD, Amer. Meteor. Soc., P9.7. [Available online at https://ams.confex.com/ams/17Air17Sat9Coas/webprogram/Paper174313.html.]

  • Pryor, K. L., 2012: Microburst nowcasting applications of GOES. Proc. 18th Conf. on Satellite Meteorology, Oceanography, and Climatology, New Orleans, LA, Amer. Meteor. Soc., 471. [Available online at https://ams.confex.com/ams/92Annual/webprogram/Paper201066.html.]

  • Pryor, K. L., 2014: Downburst prediction applications of meteorological geostationary satellites. Remote Sensing of the Atmosphere, Clouds, and Precipitation V, E. Im et al, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 9259), doi:10.1117/12.2069283.

  • Pryor, K. L., and Ellrod G. P. , 2004a: Recent improvements to the GOES microburst products. Wea. Forecasting, 19, 582594, doi:10.1175/1520-0434(2004)019<0582:RITTGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pryor, K. L., and Ellrod G. P. , 2004b: WMSI—A new index for forecasting wet microburst severity. Electron. J. Oper. Meteor., 5 (3). [Available online http://www.nwas.org/ej/pdf/2004-EJ3.pdf.]

    • Search Google Scholar
    • Export Citation
  • Przybylinski, R. W., 1995: The bow echo: Observations, numerical simulations, and severe weather detection methods. Wea. Forecasting, 10, 203218, doi:10.1175/1520-0434(1995)010<0203:TBEONS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., Levit J. J. , Weiss S. J. , and McCarthy D. W. , 2004: The frequency of large hail over the contiguous United States. Preprints, 14th Conf. on Applied Climatology, Seattle, WA, Amer. Meteor. Soc., 3.3. [Available online at https://ams.confex.com/ams/pdfpapers/69834.pdf.]

  • Schroeder, J. L., Burgett W. S. , Haynie K. B. , Sonmez I. , Skwira G. D. , Doggett A. L. , and Lipe J. W. , 2005: The West Texas Mesonet: A technical overview. J. Atmos. Oceanic Technol., 22, 211222, doi:10.1175/JTECH-1690.1.

    • Search Google Scholar
    • Export Citation
  • Seemann, S. W., Borbas E. E. , Knuteson R. O. , Stephenson G. R. , and Huang H. , 2008: Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements. J. Appl. Meteor. Climatol., 47, 108123, doi:10.1175/2007JAMC1590.1.

    • Search Google Scholar
    • Export Citation
  • Smith, B. T., Castellanos T. E. , Winters A. C. , Mead C. M. , Dean A. R. , and Thompson R. L. , 2013: Measured severe convective wind climatology and associated convective modes of thunderstorms in the contiguous United States, 2003–09. Wea. Forecasting, 28, 229236, doi:10.1175/WAF-D-12-00096.1.

    • Search Google Scholar
    • Export Citation
  • Sorbjan, Z., 1989: Structure of the Atmospheric Boundary Layer. Prentice Hall, 317 pp.

  • Srivastava, R. C., 1985: A simple model of evaporatively driven downdraft: Application to microburst downdraft. J. Atmos. Sci., 42, 10041023, doi:10.1175/1520-0469(1985)042<1004:ASMOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 17521773, doi:10.1175/1520-0469(1987)044<1752:AMOIDD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Transportation Safety Board of Canada, 2010: Knockdown and capsizing sail training yacht Concordia 300 miles SSE off Rio De Janeiro, Brazil. Marine Investigation Rep. M10F0003, 75 pp. [Available online at http://www.bst-tsb.gc.ca/eng/rapports-reports/marine/2010/m10f0003/m10f0003.pdf.]

  • Wakimoto, R. M., 1985: Forecasting dry microburst activity over the high plains. Mon. Wea. Rev., 113, 11311143, doi:10.1175/1520-0493(1985)113<1131:FDMAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., 1992: The role of convectively generated rear inflow jets in the evolution of long-lived mesoconvective systems. J. Atmos. Sci., 49, 18261847, doi:10.1175/1520-0469(1992)049<1826:TROCGR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 310 195 17
PDF Downloads 273 171 23

Progress and Developments of Downburst Prediction Applications of GOES

View More View Less
  • 1 NOAA/NESDIS/Center for Satellite Applications and Research, College Park, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The National Environmental Satellite, Data, and Information Service (NESDIS) Center for Satellite Applications and Research (STAR) has developed and evaluated a suite of products that assess convective storm–generated downburst potential derived from Geostationary Operational Environmental Satellite-13–15 (GOES-1315). The existing suite of downburst prediction algorithms employs the GOES sounder to calculate risk based on conceptual models of favorable environmental thermodynamic profiles for downburst occurrence. A diagnostic nowcasting product, the Microburst Windspeed Potential Index (MWPI), is designed to identify attributes of a favorable downburst environment: 1) the presence of large CAPE and 2) the presence of a surface-based or elevated mixed layer with a large temperature lapse rate. This paper provides an updated assessment of the MWPI algorithm, presents case studies demonstrating effective operational use of the MWPI product, and presents validation results for the Great Plains and mid-Atlantic coastal region of the United States. MWPI data were collected for downburst events that occurred during the convective seasons of 2007–13 and were validated against surface observations of convective wind gusts as recorded by wind sensors in high quality mesonetworks over the southern Great Plains and the Chesapeake Bay region. Favorable validation results include a correlation greater than 0.6 and low mean error [<0.1 knot (kt; where 1 kt = 0.51 m s−1)] between MWPI values and measured confirmed downburst wind speeds over contrasting climate regions of the continental United States. Case studies over the mid-Atlantic region and northern Florida highlight the adaptability of the MWPI algorithm to severe convective storm forecasting and warning operations.

Corresponding author address: Kenneth Pryor, Satellite Meteorology and Climatology Division, Operational Products Development Branch, NOAA/NESDIS/E/RA, NCWCP, Rm. 2833, 5830 University Research Ct., College Park, MD 20740. E-mail: ken.pryor@noaa.gov

Abstract

The National Environmental Satellite, Data, and Information Service (NESDIS) Center for Satellite Applications and Research (STAR) has developed and evaluated a suite of products that assess convective storm–generated downburst potential derived from Geostationary Operational Environmental Satellite-13–15 (GOES-1315). The existing suite of downburst prediction algorithms employs the GOES sounder to calculate risk based on conceptual models of favorable environmental thermodynamic profiles for downburst occurrence. A diagnostic nowcasting product, the Microburst Windspeed Potential Index (MWPI), is designed to identify attributes of a favorable downburst environment: 1) the presence of large CAPE and 2) the presence of a surface-based or elevated mixed layer with a large temperature lapse rate. This paper provides an updated assessment of the MWPI algorithm, presents case studies demonstrating effective operational use of the MWPI product, and presents validation results for the Great Plains and mid-Atlantic coastal region of the United States. MWPI data were collected for downburst events that occurred during the convective seasons of 2007–13 and were validated against surface observations of convective wind gusts as recorded by wind sensors in high quality mesonetworks over the southern Great Plains and the Chesapeake Bay region. Favorable validation results include a correlation greater than 0.6 and low mean error [<0.1 knot (kt; where 1 kt = 0.51 m s−1)] between MWPI values and measured confirmed downburst wind speeds over contrasting climate regions of the continental United States. Case studies over the mid-Atlantic region and northern Florida highlight the adaptability of the MWPI algorithm to severe convective storm forecasting and warning operations.

Corresponding author address: Kenneth Pryor, Satellite Meteorology and Climatology Division, Operational Products Development Branch, NOAA/NESDIS/E/RA, NCWCP, Rm. 2833, 5830 University Research Ct., College Park, MD 20740. E-mail: ken.pryor@noaa.gov
Save