• Arakawa, A., and Lamb V. R. , 1977: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods in Computational Physics, J. Chang, Ed., Vol. 17, Academic Press, 173–265.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., Ginis I. , Tuleya R. , Thomas B. , and Marchok T. , 2007: The operational GFDL hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 39653989, doi:10.1175/2007MWR2032.1.

    • Search Google Scholar
    • Export Citation
  • Brand, S., 1970: Interaction of binary tropical cyclones of the western North Pacific Ocean. J. Appl. Meteor., 9, 433441, doi:10.1175/1520-0450(1970)009<0433:IOBTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brand, S., 1973: Rapid intensification and low-latitude weakening of tropical cyclones of the western North Pacific Ocean. J. Appl. Meteor., 12, 94103, doi:10.1175/1520-0450(1973)012<0094:RIALLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, D. P., Beven J. L. , Franklin J. L. , and Blake E. S. , 2010: Atlantic hurricane season of 2008. Mon. Wea. Rev., 138, 19752001, doi:10.1175/2009MWR3174.1.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P., and Franklin J. L. , 2013: 2012 National Hurricane Center verification report. NOAA/National Hurricane Center, 79 pp. [Available online at http://www.nhc.noaa.gov/verification/pdfs/Verification_2012.pdf.]

  • Carr, L. E., and Elsberry R. L. , 1998: Objective diagnosis of binary tropical cyclone interactions for the western North Pacific basin. Mon. Wea. Rev., 126, 17341740, doi:10.1175/1520-0493(1998)126<1734:ODOBTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carr, L. E., and Elsberry R. L. , 2000: Dynamical tropical cyclone track forecast errors. Part I: Tropical region error sources. Wea. Forecasting, 15, 641661, doi:10.1175/1520-0434(2000)015<0641:DTCTFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chang, S. W.-J., 1982: The orographic effects induced by an island mountain range on propagating tropical cyclones. Mon. Wea. Rev., 110, 12551270, doi:10.1175/1520-0493(1982)110<1255:TOEIBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dickerman, C. L., 2006: A recent history of the GFDN Tropical Cyclone Forecast Model. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., P5.8. [Available online at https://ams.confex.com/ams/pdfpapers/108054.pdf.]

  • Doyle, J. D., and Coauthors, 2011: Real time tropical cyclone prediction using COAMPS-TC. Atmospheric Science and Ocean Sciences, C.-C. Wu and J. Gan, Eds., Advances in Geosciences, Vol. 28, World Scientific, 15–28.

  • Evans, A. D., and Falvey R. J. , 2013: Annual Joint Typhoon Warning Center tropical cyclone report. Joint Typhoon Warning Center, 118 pp. [Available online at http://www.usno.navy.mil/NOOC/nmfc-ph/RSS/jtwc/atcr/2012atcr.pdf.]

  • Ferrier, B. S., 1994: A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249280, doi:10.1175/1520-0469(1994)051<0249:ADMMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gall, R., Franklin J. , Marks F. , Rappaport E. N. , and Toepfer F. , 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, doi:10.1175/BAMS-D-12-00071.1.

    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S., and Coauthors, 2012a: Hurricane Weather Research and Forecasting (HWRF) model: 2012 scientific documentation. NCAR Development Testbed Center Rep., 96 pp. [Available online at http://www.dtcenter.org/HurrWRF/users/docs/index.php.]

  • Gopalakrishnan, S., Goldenberg S. , Quirino T. , Zhang X. , Marks F. , Yeh K.-S. , Atlas R. , and Tallapragada V. , 2012b: Toward improving high-resolution numerical hurricane forecasting: Influence of model horizontal grid resolution, initialization, and physics. Wea. Forecasting, 27, 647666, doi:10.1175/WAF-D-11-00055.1.

    • Search Google Scholar
    • Export Citation
  • Han, J., and Pan H.-L. , 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, doi:10.1175/WAF-D-10-05038.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and Rosmond T. E. , 1991: The description of the Navy Operational Global Atmospheric System’s spectral forecast model. Mon. Wea. Rev., 119, 17861815, doi:10.1175/1520-0493(1991)119<1786:TDOTNO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huang, Y. H., Wu C.-C. , and Wang Y. , 2011: The influence of island topography on typhoon track deflection. Mon. Wea. Rev., 139, 17081727, doi:10.1175/2011MWR3560.1.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82, 271285, doi:10.1007/s00703-001-0587-6.

  • Janjic, Z., Gerrity J. P. Jr., and Nickovic S. , 2001: An alternative approach to nonhydrostatic modeling. Mon. Wea. Rev., 129, 11641178, doi:10.1175/1520-0493(2001)129<1164:AAATNM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjic, Z., Gall R. , and Pyle M. E. , 2010: Scientific documentation for the NMM solver. NCAR Tech. Note NCAR/TN-477+STR, 54 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-845.pdf.]

  • Kehoe, R. M., Boothe M. A. , and Elsberry E. L. , 2007: Dynamical tropical cyclone 96- and 120-h track forecast errors in the western North Pacific. Wea. Forecasting, 22, 520538, doi:10.1175/WAF1002.1.

    • Search Google Scholar
    • Export Citation
  • Kleist, D. T., Ide K. , Whitaker J. , Derber J. C. , Parrish D. , and Wang X. , 2011: Expanding the GSI-based hybrid ensemble-variational system to include more flexible parameter settings. Proc. 15th Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans and Land Surface, Seattle, WA, Amer. Meteor. Soc., J16.4. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper180096.html.]

  • Kuo, H.-C., Schubert W. H. , Tsai C.-L. , and Kuo Y.-F. , 2008: Vortex interactions and barotropic aspects of concentric eyewall formation. Mon. Wea. Rev., 136, 51835198, doi:10.1175/2008MWR2378.1.

    • Search Google Scholar
    • Export Citation
  • Kurihara, Y., Tuleya R. E. , and Bender M. A. , 1998: The GFDL Hurricane Prediction System and its performance in the 1995 hurricane season. Mon. Wea. Rev., 126, 13061322, doi:10.1175/1520-0493(1998)126<1306:TGHPSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kwon, Y., Lord S. , Lapenta B. , Tallapragada V. , Liu Q. , and Zhang Z. , 2009: Sensitivity of air–sea exchange coefficients (Cd and Ch) on hurricane intensity. Preprints, 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 13C.1. [Available online at https://ams.confex.com/ams/pdfpapers/88063.pdf.]

  • Landsea, C. W., and Franklin J. L. , 2013: Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Wea. Rev., 141, 35763592, doi:10.1175/MWR-D-12-00254.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., Han J. , Hamilton D. W. , and Huang C.-Y. , 1999: Orographic influence on a drifting cyclone. J. Atmos. Sci., 56, 534562, doi:10.1175/1520-0469(1999)056<0534:OIOADC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, Q., Zhang X. , Trahan S. , and Tallapragada V. , 2012: Extending operational HWRF initialization to triple-nest HWRF system. Proc. 30th Conf. on Hurricanes and Tropical Meteorology, Ponte Verde, FL, Amer. Meteor. Soc., 14A.6. [Available online at https://ams.confex.com/ams/30Hurricane/webprogram/Paper204853.html.]

  • Nolan, D. S., Rappin E. D. , and Emanuel K. A. , 2007: Tropical cyclogenesis sensitivity to environmental parameters in radiative–convective equilibrium. Quart. J. Roy. Meteor. Soc., 133, 20852107, doi:10.1002/qj.170.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., Zhang J. A. , and Stern D. P. , 2009: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in situ observations and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and the outer-core boundary layer. Mon. Wea. Rev., 137, 36513674, doi:10.1175/2009MWR2785.1.

    • Search Google Scholar
    • Export Citation
  • Payne, K. A., Elsberry R. L. , and Boothe M. A. , 2007: Assessment of western North Pacific 96- and 120-h track guidance and present forecastability. Wea. Forecasting, 22, 10031015, doi:10.1175/WAF1030.1.

    • Search Google Scholar
    • Export Citation
  • Pike, A. C., and Neumann C. J. , 1987: The variation of track forecast difficulty among tropical cyclone basins. Wea. Forecasting, 2, 237241, doi:10.1175/1520-0434(1987)002<0237:TVOTFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prieto, R., McNoldy B. D. , Fulton S. R. , and Schubert W. H. , 2003: A classification of binary tropical cyclone–like vortex interactions. Mon. Wea. Rev., 131, 26562666, doi:10.1175/1520-0493(2003)131<2656:ACOBTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and Schrader A. J. , 2000: The Automated Tropical Cyclone Forecasting system (version 3.2). Bull. Amer. Meteor. Soc., 81, 12311240, doi:10.1175/1520-0477(2000)081<1231:TATCFS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., Braun S. A. , and Shie C.-L. , 2011: Environmental influences on the strength of Tropical Storm Debby (2006). J. Atmos. Sci., 68, 25572581, doi:10.1175/2011JAS3648.1.

    • Search Google Scholar
    • Export Citation
  • Tallapragada, V., and Coauthors, 2012: Operational implementation of high-resolution triple-nested HWRF at NCEP/EMC—A major step towards addressing intensity forecast problem. Proc. 30th Conf. on Hurricanes and Tropical Meteorology, Ponte Verde, FL, Amer. Meteor. Soc., 14A.2. [Available online at https://ams.confex.com/ams/30Hurricane/webprogram/Paper205287.html.].

  • Tallapragada, V., Kieu C. , Kwon Y. , Trahan S. , Liu Q. , Zhang Z. , and Kwon I.-H. , 2014: Evaluation of storm structure from the operational HWRF during 2012 implementation. Mon. Wea. Rev., 142, 43084325, doi:10.1175/MWR-D-13-00010.1.

    • Search Google Scholar
    • Export Citation
  • Tien, D. D., Ngo-Duc T. , Mai H. T. , and Kieu C. Q. , 2013: A study of connection between tropical cyclone track and intensity errors in the WRF Model. Meteor. Atmos. Phys., 122, 5564, doi:10.1007/s00703-013-0278-0.

    • Search Google Scholar
    • Export Citation
  • Tien, T. T., Thanh C. , Van H. T. , and Kieu C. Q. , 2012: Two-dimensional retrieval of typhoon tracks from an ensemble of multimodel outputs. Wea. Forecasting, 27, 451461, doi:10.1175/WAF-D-11-00068.1.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., and Snyder C. , 2012: Uncertainty of tropical cyclone best-track information. Wea. Forecasting, 27, 715729, doi:10.1175/WAF-D-11-00085.1.

    • Search Google Scholar
    • Export Citation
  • Velden, C., and Coauthors, 2006: The Dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Amer. Meteor. Soc., 87, 11951210, doi:10.1175/BAMS-87-9-1195.

    • Search Google Scholar
    • Export Citation
  • Ventham, J. D., and Wang B. , 2007: Large-scale flow patterns and their influence on the intensification rates of western North Pacific tropical storms. Mon. Wea. Rev., 135, 11101127, doi:10.1175/MWR3327.1.

    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., Aksoy A. , Reasor P. , Aberson S. D. , Sellwood K. J. , and Marks F. , 2013: Joint impact of forecast tendency and state error biases in ensemble Kalman filter data assimilation of inner-core tropical cyclone observations. Mon. Wea. Rev., 141, 29923006, doi:10.1175/MWR-D-12-00211.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., Huang T.-S. , Huang W.-P. , and Chou K.-H. , 2003: A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of Tropical Storm Bopha (2000) and its interaction with Super Typhoon Saomai (2000). Mon. Wea. Rev., 131, 12891300, doi:10.1175/1520-0493(2003)131<1289:ANLATB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., Ginis I. , Thomas B. , Tallapragada V. , Sheinin D. , and Bernardet L. , 2015: Description and analysis of the ocean component of NOAA’s Operational Hurricane Weather Research and Forecasting Model (HWRF). J. Atmos. Oceanic Technol., 32, 144163, doi:10.1175/JTECH-D-14-00063.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., Wang Y. , and Wu C.-C. , 2007: Environmental dynamical control of tropical cyclone intensity—An observational study. Mon. Wea. Rev., 135, 3859, doi:10.1175/MWR3278.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 181 119 24
PDF Downloads 102 69 4

Forecasting Tropical Cyclones in the Western North Pacific Basin Using the NCEP Operational HWRF: Real-Time Implementation in 2012

View More View Less
  • 1 NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland
  • | 2 NOAA/NWS/NCEP/Environmental Modeling Center, College Park, and I.M. Systems Group, Rockville, Maryland
  • | 3 NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland
  • | 4 NOAA/NWS/NCEP/Environmental Modeling Center, College Park, and I.M. Systems Group, Rockville, Maryland
  • | 5 Joint Typhoon Warning Center, Pearl Harbor, Hawaii
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study documents the recent efforts of the hurricane modeling team at the National Centers for Environmental Prediction’s (NCEP) Environmental Modeling Center (EMC) in implementing the operational Hurricane Weather Research and Forecasting Model (HWRF) for real-time tropical cyclone (TC) forecast guidance in the western North Pacific basin (WPAC) from May to December 2012 in support of the operational forecasters at the Joint Typhoon Warning Center (JTWC). Evaluation of model performance for the WPAC in 2012 reveals that the model has promising skill with the 3-, 4-, and 5-day track errors being 125, 220, and 290 nautical miles (n mi; 1 n mi = 1.852 km), respectively. Intensity forecasts also show good performance, with the most significant intensity error reduction achieved during the first 24 h. Stratification of the track and intensity forecast errors based on storm initial intensity reveals that HWRF tends to underestimate storm intensity for weak storms and overestimate storm intensity for strong storms. Further analysis of the horizontal distribution of track and intensity forecast errors over the WPAC suggests that HWRF possesses a systematic negative intensity bias, slower movement, and a rightward bias in the lower latitudes. At higher latitudes near the East China Sea, HWRF shows a positive intensity bias and faster storm movement. This appears to be related to underestimation of the dominant large-scale system associated with the western Pacific subtropical high, which renders weaker steering flows in this basin.

Corresponding author address: Dr. Vijay Tallapragada, NOAA/NWS/NCEP/Environmental Modeling Center, 5830 University Research Court, College Park, MD 20740. E-mail: vijay.tallapragada@noaa.gov

Abstract

This study documents the recent efforts of the hurricane modeling team at the National Centers for Environmental Prediction’s (NCEP) Environmental Modeling Center (EMC) in implementing the operational Hurricane Weather Research and Forecasting Model (HWRF) for real-time tropical cyclone (TC) forecast guidance in the western North Pacific basin (WPAC) from May to December 2012 in support of the operational forecasters at the Joint Typhoon Warning Center (JTWC). Evaluation of model performance for the WPAC in 2012 reveals that the model has promising skill with the 3-, 4-, and 5-day track errors being 125, 220, and 290 nautical miles (n mi; 1 n mi = 1.852 km), respectively. Intensity forecasts also show good performance, with the most significant intensity error reduction achieved during the first 24 h. Stratification of the track and intensity forecast errors based on storm initial intensity reveals that HWRF tends to underestimate storm intensity for weak storms and overestimate storm intensity for strong storms. Further analysis of the horizontal distribution of track and intensity forecast errors over the WPAC suggests that HWRF possesses a systematic negative intensity bias, slower movement, and a rightward bias in the lower latitudes. At higher latitudes near the East China Sea, HWRF shows a positive intensity bias and faster storm movement. This appears to be related to underestimation of the dominant large-scale system associated with the western Pacific subtropical high, which renders weaker steering flows in this basin.

Corresponding author address: Dr. Vijay Tallapragada, NOAA/NWS/NCEP/Environmental Modeling Center, 5830 University Research Court, College Park, MD 20740. E-mail: vijay.tallapragada@noaa.gov
Save