• Andreas, E. L, 2010: Spray-mediated enthalpy flux to the atmosphere and salt flux to the ocean in high winds. J. Phys. Oceanogr., 40, 608619, doi:10.1175/2009JPO4232.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, Persson P. O. G. , and Hare J. E. , 2008: A bulk turbulent air–sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr., 38, 15811596, doi:10.1175/2007JPO3813.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, Mahrt L. , and Vickers D. , 2012: A new drag relation for aerodynamically rough flow over the ocean. J. Atmos. Sci., 69, 25202537, doi:10.1175/JAS-D-11-0312.1.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, Jordan R. E. , Mahrt L. , and Vickers D. , 2013: Estimating the Bowen ratio over the open and ice-covered ocean. J. Geophys. Res. Oceans, 118, 43344345, doi:10.1002/jgrc.20295.

    • Search Google Scholar
    • Export Citation
  • Bao, J.-W., Wilczak J. M. , Choi J.-K. , and Kantha L. H. , 2000: Numerical simulations of air–sea interaction under high wind conditions using a coupled model: A study of hurricane development. Mon. Wea. Rev., 128, 21902210, doi:10.1175/1520-0493(2000)128<2190:NSOASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and Powell M. D. , 1995: Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123, 23482368, doi:10.1175/1520-0493(1995)123<2348:EOTIBL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and Bogner P. B. , 2001: Comments on “Surface observations in the hurricane environment.” Mon. Wea. Rev., 129, 12671269, doi:10.1175/1520-0493(2001)129<1267:COSOIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bell, M. M., and Montgomery M. T. , 2008: Observed structure, evolution, and potential intensity of category 5 Hurricane Isabel (2003) from 12 to 14 September. Mon. Wea. Rev., 136, 20232046, doi:10.1175/2007MWR1858.1.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and Emanuel K. E. , 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, doi:10.1007/BF01030791.

    • Search Google Scholar
    • Export Citation
  • Bister, M., and Emanuel K. E. , 2002: Low frequency variability of tropical cyclone potential intensity: 1. Interannual to interdecadal variability. J. Geophys. Res., 107, 4801, doi:10.1029/2001JD000776.

    • Search Google Scholar
    • Export Citation
  • Bolton, D., 1980: The computation of equivalent potential temperature. Mon. Wea. Rev., 108, 10461053, doi:10.1175/1520-0493(1980)108<1046:TCOEPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., Zhao W. , Donelan M. , and Tolman H. , 2013: Directional wind–wave coupling in fully coupled atmosphere–wave–ocean models: Results from CBLAST-Hurricane. J. Atmos. Sci., 70, 31983215, doi:10.1175/JAS-D-12-0157.1.

    • Search Google Scholar
    • Export Citation
  • Cione, J. G., Black P. G. , and Houston S. H. , 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 15501561, doi:10.1175/1520-0493(2000)128<1550:SOITHE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cione, J. G., Kalina E. A. , Zhang J. A. , and Uhlhorn E. W. , 2013: Observations of air–sea interaction and intensity change in hurricanes. Mon. Wea. Rev., 141, 23682382, doi:10.1175/MWR-D-12-00070.1.

    • Search Google Scholar
    • Export Citation
  • CIRA/MMB, 2013: The Tropical Cyclone Extended Best Track Dataset. Cooperative Institute for Research in the Atmosphere Regional and Mesoscale Meteorology Branch, accessed 20 February 2014. [Available online at http://rammb.cira.colostate.edu/research/tropical_cyclones/tc_extended_best_track_dataset/.]

  • DeCosmo, J., Katsaros K. B. , Smith S. D. , Anderson R. J. , Oost W. A. , Bumke K. , and Chadwick H. , 1996: Air–sea exchange of water vapor and sensible heat: The Humidity Exchange Over the Sea (HEXOS) results. J. Geophys. Res., 101C, 12 00112 016, doi:10.1029/95JC03796.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., Mainelli M. , Shay L. K. , Knaff J. A. , and Kaplan J. , 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, doi:10.1175/WAF862.1.

    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., DeMaria M. , and Knaff J. A. , 2006: Improvement of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor. Climatol., 45, 15731581, doi:10.1175/JAM2429.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585604, doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, doi:10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2000: A statistical analysis of tropical cyclone intensity. Mon. Wea. Rev., 128, 11391152, doi:10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 2012: Self-stratification of tropical cyclone outflow. Part II: Implications for storm intensification. J. Atmos. Sci., 69, 988996, doi:10.1175/JAS-D-11-0177.1.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., and Rotunno R. , 2011: Self-stratification of tropical cyclone outflow. Part I: Implications for storm structure. J. Atmos. Sci., 68, 22362249, doi:10.1175/JAS-D-10-05024.1.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., Kepert J. D. , and Holland G. J. , 1994: The effect of sea spray on surface energy transports over the ocean. Global Atmos. Ocean Syst., 2, 121142.

    • Search Google Scholar
    • Export Citation
  • Frisius, T., and Schonemann D. , 2012: An extended model for the potential intensity of tropical cyclones. J. Atmos. Sci., 69, 641661, doi:10.1175/JAS-D-11-064.1.

    • Search Google Scholar
    • Export Citation
  • Gall, J. S., Frank W. M. , and Kwon Y. , 2008: Effects of sea spray on tropical cyclones simulated under idealized conditions. Mon. Wea. Rev., 136, 16861705, doi:10.1175/2007MWR2183.1.

    • Search Google Scholar
    • Export Citation
  • Haus, B. K., Jeong D. , Donelan M. A. , Zhang J. A. , and Savelyev I. , 2010: Relative rates of sea–air heat transfer and frictional drag in very high winds. Geophys. Res. Lett., 37, L07802, doi:10.1029/2009GL042206.

    • Search Google Scholar
    • Export Citation
  • Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 25192541, doi:10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., Knaff J. A. , Berger H. I. , Herndon D. C. , Cram T. A. , Velden C. S. , Murnane R. J. , and Hawkins J. D. , 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89101, doi:10.1175/WAF985.1.

    • Search Google Scholar
    • Export Citation
  • Kowaleski, A., 2013: Sensitivity of tropical cyclone potential intensity to observed near-surface conditions. M.S. thesis, Dept. of Meteorology, The Pennsylvania State University, 127 pp. [Available online at https://etda.libraries.psu.edu/paper/18906/17659.]

  • Liu, W. T., Katsaros K. B. , and Businger J. A. , 1979: Bulk parameterization of air–sea exchanges of heat and water vapor including the molecular constrains at the interface. J. Atmos. Sci., 36, 17221735, doi:10.1175/1520-0469(1979)036<1722:BPOASE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., Vickers D. , Andreas E. L. , and Khelif D. , 2012: Sensible heat flux in near-neutral conditions over the sea. J. Phys. Oceanogr., 42, 11341142, doi:10.1175/JPO-D-11-0186.1.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1988: Environmental influences on hurricane intensification. J. Atmos. Sci., 45, 16781687, doi:10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, B. I., 1958: On the maximum intensity of hurricanes. J. Meteor., 15, 184195, doi:10.1175/1520-0469(1958)015<0184:OTMIOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and Takemi T. , 2010: An effective radius of the sea surface enthalpy flux for the maintenance of a tropical cyclone. Atmos. Sci. Lett., 11, 278282, doi:10.1002/asl.292.

    • Search Google Scholar
    • Export Citation
  • National Hurricane Center, cited 2013: National Hurricane Center forecast verification. Accessed 10 May 2013. [Available online at http://www.nhc.noaa.gov/verification/verify5.shtml.]

  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed-layer recovery. Mon. Wea. Rev., 118, 918938, doi:10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., Houston S. H. , and Reinhold T. A. , 1996: Hurricane Andrew’s landfall in south Florida. Part I: Standardizing measurements for documentation of surface wind fields. Wea. Forecasting, 11, 304328, doi:10.1175/1520-0434(1996)011<0304:HALISF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneider, R., and Barnes G. M. , 2005: Low-level kinematic, thermodynamic, and reflectivity fields associated with Hurricane Bonnie (1998) at landfall. Mon. Wea. Rev., 133, 32433259, doi:10.1175/MWR3027.1.

    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., and Barnes G. M. , 2009: Low-level thermodynamic, kinematic, and reflectivity fields of Hurricane Guillermo (1997) during rapid intensification. Mon. Wea. Rev., 137, 645663, doi:10.1175/2008MWR2531.1.

    • Search Google Scholar
    • Export Citation
  • Tallapragada, V. L., and Coauthors, 2014: Hurricane Weather Research and Forecasting (HWRF) Model: 2014 scientific documentation. Developmental Testbed Center, 105 pp. [Available online at http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFv3.6a_ScientificDoc.pdf.]

  • Vickers, D., Mahrt L. , and Andreas E. L , 2013: Estimates of the 10-m neutral sea surface drag coefficient from aircraft eddy-covariance measurements. J. Phys. Oceanogr., 43, 301310, doi:10.1175/JPO-D-12-0101.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and Hobbs P. V. , 2006: Atmospheric Science: An Introductory Survey. Academic Press, 350 pp.

  • Wang, Y., and Xu J. , 2010: Energy production, frictional dissipation, and maximum intensity of a numerically simulated tropical cyclone. J. Atmos. Sci., 67, 97116, doi:10.1175/2009JAS3143.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Kepert J. D. , and Holland G. J. , 2001: The effect of sea spray evaporation on tropical cyclone boundary layer structure and intensity. Mon. Wea. Rev., 129, 24812500, doi:10.1175/1520-0493(2001)129<2481:TEOSSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wing, A. A., Sobel A. H. , and Camargo S. J. , 2007: Relationship between the potential and actual intensities of tropical cyclones on interannual time scales. Geophys. Res. Lett., 34, L08810, doi:10.1029/2006GL028581.

    • Search Google Scholar
    • Export Citation
  • Wroe, D. R., and Barnes G. M. , 2003: Inflow layer energetics of Hurricane Bonnie (1998) at landfall. Mon. Wea. Rev., 131, 16001612, doi:10.1175//2547.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., Black P. G. , French J. R. , and Drennan W. M. , 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, doi:10.1029/2008GL034374.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 301 175 9
PDF Downloads 258 137 8

Thermodynamic Observations and Flux Calculations of the Tropical Cyclone Surface Layer within the Context of Potential Intensity

View More View Less
  • 1 The Pennsylvania State University, University Park, Pennsylvania
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Thermodynamic variables including temperature, humidity, and equivalent potential temperature are obtained and calculated from 88 buoy and C-MAN time series of 38 Atlantic hurricanes. Radial profiles of these variables are compared to the tropical cyclone (TC) boundary layer idealization in potential intensity (PI) theory. For the composite hurricane, temperature decreases by 2.4 K between the environmental far field and the radius of maximum winds (RMW), in contrast to the PI boundary layer profile, which is radially isothermal outside the RMW. Observationally derived moisture and equivalent potential temperature (moist entropy) begin to increase with decreasing radius beyond the RMW, especially for the subset of category 3–5 hurricanes. This suggests the relevance of ocean–air fluxes beyond the RMW to increasing the moist entropy of eyewall updrafts. Ocean–air enthalpy fluxes produced by 85 time series with sea surface temperature data are explored using the bulk aerodynamic flux formulation and two methods that explicitly account for sea spray. Formulations incorporating sea spray produce greater total enthalpy fluxes, especially near the RMW. Total enthalpy fluxes calculated using composite observed conditions differ substantially from fluxes calculated using the idealizations of classic PI theory, though the sign of the difference depends on the calculation method used. Observed conditions may yield higher maximum intensities if maximum intensity is governed by the energy production–frictional dissipation balance under the eyewall. However, if TC intensity is governed by the entropy gained by inflow air, no matter where entropy is acquired, observed conditions may yield lower intensities than the classic PI theory boundary layer.

Corresponding author address: Jenni L. Evans, Dept. of Meteorology, The Pennsylvania State University, 503 Walker Bldg., University Park, PA 16802. E-mail: jle7@psu.edu

Abstract

Thermodynamic variables including temperature, humidity, and equivalent potential temperature are obtained and calculated from 88 buoy and C-MAN time series of 38 Atlantic hurricanes. Radial profiles of these variables are compared to the tropical cyclone (TC) boundary layer idealization in potential intensity (PI) theory. For the composite hurricane, temperature decreases by 2.4 K between the environmental far field and the radius of maximum winds (RMW), in contrast to the PI boundary layer profile, which is radially isothermal outside the RMW. Observationally derived moisture and equivalent potential temperature (moist entropy) begin to increase with decreasing radius beyond the RMW, especially for the subset of category 3–5 hurricanes. This suggests the relevance of ocean–air fluxes beyond the RMW to increasing the moist entropy of eyewall updrafts. Ocean–air enthalpy fluxes produced by 85 time series with sea surface temperature data are explored using the bulk aerodynamic flux formulation and two methods that explicitly account for sea spray. Formulations incorporating sea spray produce greater total enthalpy fluxes, especially near the RMW. Total enthalpy fluxes calculated using composite observed conditions differ substantially from fluxes calculated using the idealizations of classic PI theory, though the sign of the difference depends on the calculation method used. Observed conditions may yield higher maximum intensities if maximum intensity is governed by the energy production–frictional dissipation balance under the eyewall. However, if TC intensity is governed by the entropy gained by inflow air, no matter where entropy is acquired, observed conditions may yield lower intensities than the classic PI theory boundary layer.

Corresponding author address: Jenni L. Evans, Dept. of Meteorology, The Pennsylvania State University, 503 Walker Bldg., University Park, PA 16802. E-mail: jle7@psu.edu
Save