• Accadia, C., Mariani S. , Casaioli M. , Lavagnini A. , and Speranza A. , 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918932, doi:10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adlerman, E. J., and Droegemeier K. K. , 2002: The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters. Mon. Wea. Rev., 130, 26712691, doi:10.1175/1520-0493(2002)130<2671:TSONSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 28842903, doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131, 634642, doi:10.1175/1520-0493(2003)131<0634:ALLSFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. Tellus, 61A, 7283, doi:10.1111/j.1600-0870.2008.00361.x.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. L., Hoar T. , Raeder K. , Liu H. , Collins N. , Torn R. , and Arellano A. , 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., 2005: Southern high-latitude ensemble data assimilation in the Antarctic Mesoscale Prediction System. Mon. Wea. Rev., 133, 34313449, doi:10.1175/MWR3042.1.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., and Coauthors, 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, doi:10.1175/BAMS-D-11-00167.1.

    • Search Google Scholar
    • Export Citation
  • Burgers, G., van Leeuwen P. J. , and Evensen G. , 1998: Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev., 126, 17191724, doi:10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and Dudhia J. , 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., Xue M. , and Kong F. , 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, doi:10.1175/2009WAF2222222.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., and Weisman M. L. , 2010: Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF Model simulations and the operational NAM. Wea. Forecasting, 25, 14951509, doi:10.1175/2010WAF2222404.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Kain J. S. , Marsh P. T. , Correia J. Jr., Xue M. , and Kong F. , 2012: Forecasting tornado pathlengths using a three-dimensional object identification algorithm applied to convection-allowing forecasts. Wea. Forecasting, 27, 10901113, doi:10.1175/WAF-D-11-00147.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gao J. , Marsh P. , Smith T. , Kain J. , Correia J. , Xue M. , and Kong F. , 2013: Tornado pathlength forecasts from 2010 to 2011 using ensemble updraft helicity. Wea. Forecasting, 28, 387407, doi:10.1175/WAF-D-12-00038.1.

    • Search Google Scholar
    • Export Citation
  • Done, J., Davis C. A. , and Weisman M. L. , 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) Model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., Zhang F. , Wicker L. J. , Snyder C. , and Crook N. A. , 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005, doi:10.1175/1520-0493(2004)132<1982:WATRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duc, L., Saito K. , and Seko H. , 2013: Spatial–temporal fractions verification for high-resolution ensemble forecasts. Tellus, 65A, 18 171, doi:10.3402/tellusa.v65i0.18171.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143–10162, doi:10.1029/94JC00572.

  • Gebhardt, C., Theis S. E. , Paulat M. , and Ben Bouallègue Z. , 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168177, doi:10.1016/j.atmosres.2010.12.008.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, doi:10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., Kirshbaum D. J. , Belcher S. E. , Roberts N. M. , and Leoncini G. , 2011: Ensemble predictability of an isolated mountain thunderstorm in a high-resolution model. Quart. J. Roy. Meteor. Soc., 137, 21242137, doi:10.1002/qj.877.

    • Search Google Scholar
    • Export Citation
  • Hanley, K. E., Kirshbaum D. J. , Roberts N. M. , and Leoncini G. , 2013: Sensitivities of a squall line over central Europe in a convective-scale ensemble. Mon. Wea. Rev., 141, 112133, doi:10.1175/MWR-D-12-00013.1.

    • Search Google Scholar
    • Export Citation
  • Hitchens, N. M., Brooks H. E. , and Kay M. P. , 2013: Objective limits on forecasting skill of rare events. Wea. Forecasting, 28, 525534, doi:10.1175/WAF-D-12-00113.1.

    • Search Google Scholar
    • Export Citation
  • Hohenegger, C., Walser A. , Langhans W. , and Schär C. , 2008: Cloud-resolving ensemble simulations of the August 2005 Alpine flood. Quart. J. Roy. Meteor. Soc., 134, 889904, doi:10.1002/qj.252.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and Mitchell H. L. , 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811, doi:10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., Delamere J. S. , Mlawer E. J. , Shephard M. W. , Clough S. A. , and Collins W. D. , 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Jirak, I. L., and Coauthors, 2014: An overview of the 2013 NOAA Hazardous Weather Testbed Spring Forecasting Experiment. Preprints, 26th Conf. on Weather Analysis and Forecasting/22nd Conf. on Numerical Weather Prediction, Atlanta, GA, Amer. Meteor. Soc., J11.1. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Manuscript/Paper239754/AMS2014_SFE2013_Overview_Ext_Abstract.pdf.]

  • Johnson, A., and Wang X. , 2012: Verification and calibration of neighborhood and object-based probabilistic precipitation forecasts from a multimodel convection-allowing ensemble. Mon. Wea. Rev., 140, 30543077, doi:10.1175/MWR-D-11-00356.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, A., Wang X. , and Xue M. , 2013: Object-based evaluation of the impact of horizontal grid spacing on convection-allowing forecasts. Mon. Wea. Rev., 141, 34133425, doi:10.1175/MWR-D-13-00027.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and Stensrud D. J. , 2012: Assimilating AIRS temperature and mixing ratio profiles using an ensemble Kalman filter approach for convective-scale forecasts. Wea. Forecasting, 27, 541564, doi:10.1175/WAF-D-11-00090.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., Stensrud D. J. , Minnis P. , and Palikonda R. , 2013: Evaluation of a forward operator to assimilate cloud water path into WRF-DART. Mon. Wea. Rev., 141, 22722289, doi:10.1175/MWR-D-12-00238.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., Stensrud D. , Wicker L. , Minnis P. , and Palikonda R. , 2015: Simultaneous radar and satellite data storm-scale assimilation using an ensemble Kalman filter approach for 24 May 2011. Mon. Wea. Rev., 143, 165194, doi:10.1175/MWR-D-14-00180.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., Weiss S. J. , Levit J. J. , Baldwin M. E. , and Bright D. R. , 2006: Examination of convection-allowing configurations of the WRF Model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167181, doi:10.1175/WAF906.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2008: Some practical considerations regarding horizontal resolution in the first generation of operational convection-allowing NWP. Wea. Forecasting, 23, 931952, doi:10.1175/WAF2007106.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., Dembek S. R. , Weiss S. J. , Case J. L. , Levit J. J. , and Sobash R. A. , 2010: Extracting unique information from high-resolution forecast models: Monitoring selected fields and phenomena every time step. Wea. Forecasting, 25, 15361542, doi:10.1175/2010WAF2222430.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2013: A feasibility study for probabilistic convection initiation forecasts based on explicit numerical guidance. Bull. Amer. Meteor. Soc., 94, 12131225, doi:10.1175/BAMS-D-11-00264.1.

    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2008: Real-time storm-scale ensemble forecasting during the 2008 Spring Experiment. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 12.3. [Available online at https://ams.confex.com/ams/pdfpapers/141827.pdf.]

  • Kong, F., and Coauthors, 2009: A real-time storm-scale ensemble forecast system: 2009 Spring Experiment. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 16A.3. [Available online at https://ams.confex.com/ams/pdfpapers/154118.pdf.]

  • Lean, H. W., Clark P. A. , Dixon M. , Roberts N. M. , Fitch A. , Forbes R. , and Halliwell C. , 2008: Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom. Mon. Wea. Rev., 136, 34083424, doi:10.1175/2008MWR2332.1.

    • Search Google Scholar
    • Export Citation
  • Leith, C., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102, 409418, doi:10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and Mitchell K. E. , 2005: The NCEP stage II/IV hourly precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at http://ams.confex.com/ams/pdfpapers/83847.pdf.]

  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307, doi:10.1111/j.2153-3490.1969.tb00444.x.

    • Search Google Scholar
    • Export Citation
  • Melhauser, C., and Zhang F. , 2012: Practical and intrinsic predictability of severe and convective weather at the mesoscales. J. Atmos. Sci., 69, 33503371, doi:10.1175/JAS-D-11-0315.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the long-wave. J. Geophys. Res., 102, 1666316682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Peralta, C., Bouallegue Z. B. , Theis S. E. , Gebhardt C. , and Buchhold M. , 2012: Accounting for initial condition uncertainties in COSMO-DE-EPS. J. Geophys. Res., 117, D07108, doi:10.1029/2011JD016581.

    • Search Google Scholar
    • Export Citation
  • Putnam, B. J., Xue M. , Jung Y. , Snook N. A. , and Zhang G. , 2014: The analysis and prediction of microphysical states and polarimetric variables in a mesoscale convective system using double-moment microphysics, multi-network radar data, and the ensemble Kalman filter. Mon. Wea. Rev., 142, 141162, doi:10.1175/MWR-D-13-00042.1.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and Lean H. W. , 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., and Coauthors, 2009: The NCEP North American Mesoscale modeling system: Recent changes and future plans. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 2A.4. [Available online at https://ams.confex.com/ams/pdfpapers/154114.pdf.]

  • Romine, G. S., Schwartz C. S. , Snyder C. , Anderson J. , and Weisman M. , 2013: Model bias in a continuously cycled assimilation system and its influence on convection-permitting forecasts. Mon. Wea. Rev., 141, 12631284, doi:10.1175/MWR-D-12-00112.1.

    • Search Google Scholar
    • Export Citation
  • Romine, G. S., Schwartz C. S. , Berner J. , Fossell K. R. , Snyder C. , Anderson J. L. , and Weisman M. L. , 2014: Representing forecast error in a convection-permitting ensemble system. Mon. Wea. Rev., 142, 45194541, doi:10.1175/MWR-D-14-00100.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and Clark A. J. , 2014: Evaluation of ensemble configurations for the analysis and prediction of heavy-rain-producing mesoscale convective systems. Mon. Wea. Rev., 142, 41084138, doi:10.1175/MWR-D-13-00357.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Liu Z. , 2014: Convection-permitting forecasts initialized with continuously cycling limited-area 3DVAR, ensemble Kalman filter, and “hybrid” variational–ensemble data assimilation systems. Mon. Wea. Rev., 142, 716738, doi:10.1175/MWR-D-13-00100.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF Model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, doi:10.1175/2009MWR2924.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2010: Toward improved convection-allowing ensembles: Model physics sensitivities and optimizing probabilistic guidance with small ensemble membership. Wea. Forecasting, 25, 263280, doi:10.1175/2009WAF2222267.1.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., Romine G. S. , Smith K. R. , and Weisman M. L. , 2014: Characterizing and optimizing precipitation forecasts from a convection-permitting ensemble initialized by a mesoscale ensemble Kalman filter. Wea. Forecasting, 29, 12951318, doi:10.1175/WAF-D-13-00145.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Weisman M. L. , 2009: The impact of positive-definite moisture transport on NWP precipitation forecasts. Mon. Wea. Rev., 137, 488494, doi:10.1175/2008MWR2583.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN–475+STR, 113 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Snyder, C., and Zhang F. , 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677, doi:10.1175//2555.1.

    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., Kain J. S. , Bright D. R. , Dean A. R. , Coniglio M. C. , and Weiss S. J. , 2011: Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts. Wea. Forecasting, 26, 714728, doi:10.1175/WAF-D-10-05046.1.

    • Search Google Scholar
    • Export Citation
  • Tegen, I., Hollrig P. , Chin M. , Fung I. , Jacob D. , and Penner J. , 1997: Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res., 102, 2389523915, doi:10.1029/97JD01864.

    • Search Google Scholar
    • Export Citation
  • Theis, S. E., Hense A. , and Damrath U. , 2005: Probabilistic precipitation forecasts from a deterministic model: A pragmatic approach. Meteor. Appl., 12, 257268, doi:10.1017/S1350482705001763.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Field P. R. , Rasmussen R. M. , and Hall W. D. , 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev., 117, 17791800, doi:10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., Hakim G. J. , and Snyder C. , 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502, doi:10.1175/MWR3187.1.

    • Search Google Scholar
    • Export Citation
  • Vié, B., Nuissier O. , and Ducrocq V. , 2011: Cloud-resolving ensemble simulations of Mediterranean heavy precipitating events: Uncertainty on initial conditions and lateral boundary conditions. Mon. Wea. Rev., 139, 403423, doi:10.1175/2010MWR3487.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., Parrish D. F. , Kleist D. T. , and Whitaker J. S. , 2013: GSI 3DVAR-based ensemble–variational hybrid data assimilation for NCEP Global Forecast System: Single-resolution experiments. Mon. Wea. Rev., 141, 40984117, doi:10.1175/MWR-D-12-00141.1.

    • Search Google Scholar
    • Export Citation
  • Warner, T. T., Peterson R. A. , and Treadon R. E. , 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 25992617, doi:10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Davis C. A. , Wang W. , Manning K. W. , and Klemp J. B. , 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW Model. Wea. Forecasting, 23, 407437, doi:10.1175/2007WAF2007005.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Evans C. , and Bosart L. , 2013: The 8 May 2009 Superderecho: Analysis of a real-time explicit convective forecast. Wea. Forecasting, 28, 863892, doi:10.1175/WAF-D-12-00023.1.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Coauthors, 2015: The Mesoscale Predictability Experiment (MPEX). Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-13-00281.1, in press.

    • Search Google Scholar
    • Export Citation
  • Weiss, S. J., and Vescio M. D. , 1998: Severe local storm climatology 1955–1996: Analysis of reporting trends and implications for NWS operations. Preprints, 18th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 536539.

  • Wolff, J. K., Harrold M. , Fowler T. , Gotway J. H. , Nance L. , and Brown B. G. , 2014: Beyond the basics: Evaluating model-based precipitation forecasts using traditional, spatial, and object-based methods. Wea. Forecasting, 29, 14511472, doi:10.1175/WAF-D-13-00135.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., Wang Y. , and Hamilton K. , 2011: Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 34893513, doi:10.1175/MWR-D-10-05091.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., Snyder C. , and Sun J. , 2004: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 12381253, doi:10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 99 7
PDF Downloads 156 83 5

A Real-Time Convection-Allowing Ensemble Prediction System Initialized by Mesoscale Ensemble Kalman Filter Analyses

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

In May and June 2013, the National Center for Atmospheric Research produced real-time 48-h convection-allowing ensemble forecasts at 3-km horizontal grid spacing using the Weather Research and Forecasting (WRF) Model in support of the Mesoscale Predictability Experiment field program. The ensemble forecasts were initialized twice daily at 0000 and 1200 UTC from analysis members of a continuously cycling, limited-area, mesoscale (15 km) ensemble Kalman filter (EnKF) data assimilation system and evaluated with a focus on precipitation and severe weather guidance. Deterministic WRF Model forecasts initialized from GFS analyses were also examined. Subjectively, the ensemble forecasts often produced areas of intense convection over regions where severe weather was observed. Objective statistics confirmed these subjective impressions and indicated that the ensemble was skillful at predicting precipitation and severe weather events. Forecasts initialized at 1200 UTC were more skillful regarding precipitation and severe weather placement than forecasts initialized 12 h earlier at 0000 UTC, and the ensemble forecasts were typically more skillful than GFS-initialized forecasts. At times, 0000 UTC GFS-initialized forecasts had temporal distributions of domain-average rainfall closer to observations than EnKF-initialized forecasts. However, particularly when GFS analyses initialized WRF Model forecasts, 1200 UTC forecasts produced more rainfall during the first diurnal maximum than 0000 UTC forecasts. This behavior was mostly attributed to WRF Model initialization of clouds and moist physical processes. The success of these real-time ensemble forecasts demonstrates the feasibility of using limited-area continuously cycling EnKFs as a method to initialize convection-allowing ensemble forecasts, and future real-time high-resolution ensemble development leveraging EnKFs seems justified.

NCAR is sponsored by the National Science Foundation.

Corresponding author address: Craig Schwartz, NCAR, 3090 Center Green Dr., Boulder, CO 80301. E-mail: schwartz@ucar.edu

Abstract

In May and June 2013, the National Center for Atmospheric Research produced real-time 48-h convection-allowing ensemble forecasts at 3-km horizontal grid spacing using the Weather Research and Forecasting (WRF) Model in support of the Mesoscale Predictability Experiment field program. The ensemble forecasts were initialized twice daily at 0000 and 1200 UTC from analysis members of a continuously cycling, limited-area, mesoscale (15 km) ensemble Kalman filter (EnKF) data assimilation system and evaluated with a focus on precipitation and severe weather guidance. Deterministic WRF Model forecasts initialized from GFS analyses were also examined. Subjectively, the ensemble forecasts often produced areas of intense convection over regions where severe weather was observed. Objective statistics confirmed these subjective impressions and indicated that the ensemble was skillful at predicting precipitation and severe weather events. Forecasts initialized at 1200 UTC were more skillful regarding precipitation and severe weather placement than forecasts initialized 12 h earlier at 0000 UTC, and the ensemble forecasts were typically more skillful than GFS-initialized forecasts. At times, 0000 UTC GFS-initialized forecasts had temporal distributions of domain-average rainfall closer to observations than EnKF-initialized forecasts. However, particularly when GFS analyses initialized WRF Model forecasts, 1200 UTC forecasts produced more rainfall during the first diurnal maximum than 0000 UTC forecasts. This behavior was mostly attributed to WRF Model initialization of clouds and moist physical processes. The success of these real-time ensemble forecasts demonstrates the feasibility of using limited-area continuously cycling EnKFs as a method to initialize convection-allowing ensemble forecasts, and future real-time high-resolution ensemble development leveraging EnKFs seems justified.

NCAR is sponsored by the National Science Foundation.

Corresponding author address: Craig Schwartz, NCAR, 3090 Center Green Dr., Boulder, CO 80301. E-mail: schwartz@ucar.edu
Save