• Alessandrini, S., Sperati S. , and Pinson P. , 2013: A comparison between the ECMWF and COSMO ensemble prediction systems applied to short-term wind power forecasting on real data. Appl. Energy, 107, 271280, doi:10.1016/j.apenergy.2013.02.041.

    • Search Google Scholar
    • Export Citation
  • Baldauf, M., Seifert A. , Förstner J. , Majewski D. , Raschendorfer M. , and Reinhardt T. , 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Baran, S., and Lerch S. , 2015: Log-normal distribution based ensemble model output statistics models for probabilistic wind speed forecasting. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2521, in press.

    • Search Google Scholar
    • Export Citation
  • Berner, J., Shutts G. , Leutbecher M. , and Palmer T. , 2009: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF Ensemble Prediction System. J. Atmos. Sci., 66, 603626, doi:10.1175/2008JAS2677.1.

    • Search Google Scholar
    • Export Citation
  • Bouallègue, Z. B., Theis S. E. , and Gebhardt C. , 2013: Enhancing COSMO-DE ensemble forecasts by inexpensive techniques. Meteor. Z., 22, 4959, doi:10.1127/0941-2948/2013/0374.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., Arribas A. , Mylne K. R. , Robertson K. B. , and Beare S. E. , 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722, doi:10.1002/qj.234.

    • Search Google Scholar
    • Export Citation
  • Bröcker, J., and Smith L. , 2007: Increasing the reliability of reliability diagrams. Wea. Forecasting, 22, 651661, doi:10.1175/WAF993.1.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and Palmer T. , 1995: The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci., 52, 14341456, doi:10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., Milleer M. , and Palmer T. , 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908, doi:10.1002/qj.49712556006.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., Leutbecher M. , and Isaksen L. , 2008: Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 134, 20512066, doi:10.1002/qj.346.

    • Search Google Scholar
    • Export Citation
  • Candille, G., and Talagrand O. , 2008: Impact of observational error on the validation of ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 134, 959971, doi:10.1002/qj.268.

    • Search Google Scholar
    • Export Citation
  • Du, J., and Tracton M. , 2001: Implementation of a real-time short-range ensemble forecasting system at NCEP: An update. Preprints, Ninth Conf. on Mesoscale Processes, Fort Lauderdale, FL, Amer. Meteor. Soc., P4.9. [Available online at https://ams.confex.com/ams/pdfpapers/23074.pdf.]

  • Du, J., and Coauthors, 2009: NCEP short-range ensemble forecast (SREF) system upgrade in 2009. Preprints, 19th Conf. on Numerical Weather Prediction/23rd Conf. on Weather Analysis and Forecasting, Omaha, NE, Amer. Meteor. Soc., 4A.4. [Available online at https://ams.confex.com/ams/pdfpapers/153264.pdf.]

  • Eckel, F., and Mass C. , 2005: Aspects of effective mesoscale, short-range ensemble forecasting. Wea. Forecasting, 20, 328350, doi:10.1175/WAF843.1.

    • Search Google Scholar
    • Export Citation
  • Efron, B., 1979: Bootstrap methods: Another look at the jackknife. Ann. Stat., 7, 126, doi:10.1214/aos/1176344552.

  • Ferro, C. A., Richardson D. S. , and Weigel A. P. , 2008: On the effect of ensemble size on the discrete and continuous ranked probability scores. Meteor. Appl., 15, 1924, doi:10.1002/met.45.

    • Search Google Scholar
    • Export Citation
  • Flowerdew, J., 2012: Calibration and combination of medium-range ensemble precipitation forecasts. Met Office Forecasting Research Tech. Rep. 567, 21 pp. [Available online at http://www.metoffice.gov.uk/media/pdf/h/6/FRTR567.pdf.]

  • Fortin, V., Abaza M. , Anctil F. , and Turcotte R. , 2014: Why should ensemble spread match the RMSE of the ensemble mean? J. Hydrometeor., 15, 17081713, doi:10.1175/JHM-D-14-0008.1.

    • Search Google Scholar
    • Export Citation
  • Fraley, C., Raftery A. E. , and Gneiting T. , 2010: Calibrating multimodel forecast ensembles with exchangeable and missing members using Bayesian model averaging. Mon. Wea. Rev., 138, 190202, doi:10.1175/2009MWR3046.1.

    • Search Google Scholar
    • Export Citation
  • Frogner, I.-L., Haakenstad H. , and Iversen T. , 2006: Limited-area ensemble predictions at the Norwegian Meteorological Institute. Quart. J. Roy. Meteor. Soc., 132, 27852808, doi:10.1256/qj.04.178.

    • Search Google Scholar
    • Export Citation
  • García-Moya, J.-A., Callado A. , Escribà P. , Santos C. , Santos-Muñoz D. , and Simarro J. , 2011: Predictability of short-range forecasting: A multimodel approach. Tellus, 63A, 550563, doi:10.1111/j.1600-0870.2010.00506.x.

    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., Theis S. , Paulat M. , and Ben Bouallègue Z. , 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168177, doi:10.1016/j.atmosres.2010.12.008.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., and Raftery A. E. , 2007: Strictly proper scoring rules, prediction, and estimation. J. Amer. Stat. Assoc., 102, 359378, doi:10.1198/016214506000001437.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., Raftery A. E. , Westveld A. , and Goldman T. , 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., 133, 10981118, doi:10.1175/MWR2904.1.

    • Search Google Scholar
    • Export Citation
  • Grimit, E. P., and Mass C. F. , 2002: Initial results of a mesoscale short-range ensemble forecasting system over the Pacific Northwest. Wea. Forecasting, 17, 192205, doi:10.1175/1520-0434(2002)017<0192:IROAMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., Doblas-Reyes F. , and Palmer T. , 2005: The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus, 57A, 219233, doi:10.1111/j.1600-0870.2005.00103.x.

    • Search Google Scholar
    • Export Citation
  • Hagedorn, R., Buizza R. , Hamill T. , Leutbecher M. , and Palmer T. , 2012: Comparing TIGGE multimodel forecasts with reforecast-calibrated ECMWF ensemble forecasts. Quart. J. Roy. Meteor. Soc., 138, 18141827, doi:10.1002/qj.1895.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jiménez, P., González-Rouco J. , Navarro J. , Montávez J. , and García-Bustamante E. , 2010: Quality assurance of surface wind observations from automated weather stations. J. Atmos. Oceanic Technol., 27, 11011122, doi:10.1175/2010JTECHA1404.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, C., and Swinbank R. , 2009: Medium-range multimodel ensemble combination and calibration. Quart. J. Roy. Meteor. Soc., 135, 777794, doi:10.1002/qj.383.

    • Search Google Scholar
    • Export Citation
  • Junk, C., von Bremen L. , Kühn M. , Späth S. , and Heinemann D. , 2014: Comparison of postprocessing methods for the calibration of 100-m wind ensemble forecasts at off-and onshore sites. J. Appl. Meteor. Climatol., 53, 950969, doi:10.1175/JAMC-D-13-0162.1.

    • Search Google Scholar
    • Export Citation
  • Lavaysse, C., Carrera M. , Bélair S. , Gagnon N. , Frenette R. , Charron M. , and Yau M. , 2013: Impact of surface parameter uncertainties within the Canadian regional ensemble prediction system. Mon. Wea. Rev., 141, 15061526, doi:10.1175/MWR-D-11-00354.1.

    • Search Google Scholar
    • Export Citation
  • Lerch, S., and Thorarinsdottir T. , 2013: Comparison of non-homogeneous regression models for probabilistic wind speed forecasting. Tellus, 65A, 21206, doi:10.3402/tellusa.v65i0.21206.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and Palmer T. , 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539, doi:10.1016/j.jcp.2007.02.014.

  • Li, X., Charron M. , Spacek L. , and Candille G. , 2008: A regional ensemble prediction system based on moist targeted singular vectors and stochastic parameter perturbations. Mon. Wea. Rev., 136, 443462, doi:10.1175/2007MWR2109.1.

    • Search Google Scholar
    • Export Citation
  • Marsigli, C., 2009: COSMO-SREPS priority project “Short Range Ensemble Prediction System (SREPS)”: Final report. COSMO Tech. Rep. 13, 32 pp. [Available online at http://www.cosmo-model.org/content/model/documentation/techReports/docs/techReport13.pdf.]

  • Marsigli, C., Boccanera F. , Montani A. , and Paccagnella T. , 2005: The COSMO-LEPS mesoscale ensemble system: Validation of the methodology and verification. Nonlinear Processes Geophys., 12, 527536, doi:10.5194/npg-12-527-2005.

    • Search Google Scholar
    • Export Citation
  • Marsigli, C., Montani A. , and Paccagnella T. , 2014: Perturbation of initial and boundary conditions for a limited-area ensemble: Multi-model versus single-model approach. Quart. J. Roy. Meteor. Soc., 140, 197208, doi:10.1002/qj.2128.

    • Search Google Scholar
    • Export Citation
  • Molteni, F., Buizza R. , Palmer T. N. , and Petroliagis T. , 1996: The ECMWF Ensemble Prediction System: Methodology and validation. Quart. J. Roy. Meteor. Soc., 122, 73119, doi:10.1002/qj.49712252905.

    • Search Google Scholar
    • Export Citation
  • Montani, A., Cesari D. , Marsigli C. , and Paccagnella T. , 2011: Seven years of activity in the field of mesoscale ensemble forecasting by the COSMO-LEPS system: Main achievements and open challenges. Tellus, 63A, 605624, doi:10.1111/j.1600-0870.2010.00499.x.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., 1993: Extended-range atmospheric prediction and the Lorenz model. Bull. Amer. Meteor. Soc., 74, 4965, doi:10.1175/1520-0477(1993)074<0049:ERAPAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, Y.-Y., Buizza R. , and Leutbecher M. , 2008: TIGGE: Preliminary results on comparing and combining ensembles. Quart. J. Roy. Meteor. Soc., 134, 20292050, doi:10.1002/qj.334.

    • Search Google Scholar
    • Export Citation
  • Peralta, C., Bouallègue Z. , Theis S. , Gebhardt C. , and Buchhold M. , 2012: Accounting for initial condition uncertainties in COSMO-DE-EPS. J. Geophys. Res., 117, D07108, doi:10.1029/2011JD016581.

  • Pinson, P., 2012: Adaptive calibration of (u, υ)-wind ensemble forecasts. Quart. J. Roy. Meteor. Soc., 138, 12731284, doi:10.1002/qj.1873.

    • Search Google Scholar
    • Export Citation
  • Pinson, P., McSharry P. , and Madsen H. , 2010: Reliability diagrams for non-parametric density forecasts of continuous variables: Accounting for serial correlation. Quart. J. Roy. Meteor. Soc., 136, 7790, doi:10.1002/qj.559.

    • Search Google Scholar
    • Export Citation
  • Röpnack, A., Hense A. , Gebhardt C. , and Majewski D. , 2013: Bayesian model verification of NWP ensemble forecasts. Mon. Wea. Rev., 141, 375387, doi:10.1175/MWR-D-11-00350.1.

    • Search Google Scholar
    • Export Citation
  • Schuhen, N., Thorarinsdottir T. , and Gneiting T. , 2012: Ensemble model output statistics for wind vectors. Mon. Wea. Rev., 140, 32043219, doi:10.1175/MWR-D-12-00028.1.

    • Search Google Scholar
    • Export Citation
  • Sloughter, J., Gneiting T. , and Raftery A. , 2010: Probabilistic wind speed forecasting using ensembles and Bayesian model averaging. J. Amer. Stat. Assoc., 105, 2535, doi:10.1198/jasa.2009.ap08615.

    • Search Google Scholar
    • Export Citation
  • Solazzo, E., Riccio A. , Kioutsioukis I. , and Galmarini S. , 2013: Pauci ex tanto numero: Reduce redundancy in multi-model ensembles. Atmos. Chem. Phys., 13, 83158333, doi:10.5194/acp-13-8315-2013.

    • Search Google Scholar
    • Export Citation
  • Thorarinsdottir, T., and Gneiting T. , 2010: Probabilistic forecasts of wind speed: Ensemble model output statistics by using heteroscedastic censored regression. J. Roy. Stat. Soc., 173A, 371388, doi:10.1111/j.1467-985X.2009.00616.x.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1993: Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 74, 23172330, doi:10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van den Dool, H., 1989: A new look at weather forecasting through analogues. Mon. Wea. Rev., 117, 22302247, doi:10.1175/1520-0493(1989)117<2230:ANLAWF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2011: The central European limited-area ensemble forecasting system: ALADIN-LAEF. Quart. J. Roy. Meteor. Soc., 137 (655), 483502, doi:10.1002/qj.751.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Tascu S. , Weidle F. , and Schmeisser K. , 2012: Evaluation of the added value of regional ensemble forecasts on global ensemble forecasts. Wea. Forecasting, 27, 972987, doi:10.1175/WAF-D-11-00102.1.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Toth Z. , Wobus R. , and Zhu Y. , 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, doi:10.3402/tellusa.v60i1.15267.

    • Search Google Scholar
    • Export Citation
  • Weigel, A., and Bowler N. , 2009: Comment on ‘Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts?’ Quart. J. Roy. Meteor. Soc., 135, 535539, doi:10.1002/qj.381.

    • Search Google Scholar
    • Export Citation
  • Weigel, A., Liniger M. , and Appenzeller C. , 2008: Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Quart. J. Roy. Meteor. Soc., 134, 241260, doi:10.1002/qj.210.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Sciences. 3rd ed. Academic Press, 676 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 105 67 6
PDF Downloads 92 60 5

Comparison and Combination of Regional and Global Ensemble Prediction Systems for Probabilistic Predictions of Hub-Height Wind Speed

View More View Less
  • 1 ForWind—Center for Wind Energy Research, University of Oldenburg, Oldenburg, Germany
  • | 2 National Center for Atmospheric Research, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The objective of this paper is to compare probabilistic 100-m wind speed forecasts, which are relevant for wind energy applications, from different regional and global ensemble prediction systems (EPSs) at six measurement towers in central Europe and to evaluate the benefits of combining single-model ensembles into multimodel ensembles. The global 51-member EPS from the European Centre for Medium-Range Weather Forecasts (ECMWF EPS) is compared against the Consortium for Small-Scale Modelling’s (COSMO) limited-area 16-member EPS (COSMO-LEPS) and a regional, high-resolution 20-member EPS centered over Germany (COSMO-DE EPS). The ensemble forecasts are calibrated with univariate (wind speed) ensemble model output statistics (EMOS) and bivariate (wind vector) recursive and adaptive calibration (AUV). The multimodel ensembles are constructed by pooling together raw or best-calibrated ensemble forecasts. An additional postprocessing of these multimodel ensembles with both EMOS and AUV is also tested. The best-performing calibration methodology for ECMWF EPS is AUV, while EMOS performs better than AUV for the calibration of COSMO-DE EPS. COSMO-LEPS has similar skill when calibrated with both EMOS and AUV. The AUV ECMWF EPS outperforms the EMOS COSMO-LEPS and COSMO-DE EPS for deterministic and probabilistic wind speed forecast skill. For most thresholds, ECMWF EPS has a comparable reliability and sharpness but higher discrimination ability. Multimodel ensembles, which are constructed by pooling together the best-calibrated EPSs, improve the skill relative to the AUV ECMWF EPS. An analysis of the error correlation among the EPSs indicates that multimodel ensemble skill can be considerably higher when the error correlation is low.

Denotes Open Access content.

Corresponding author address: Constantin Junk, ForWind—Center for Wind Energy Research, University of Oldenburg, Ammerländer Heerstrasse 136, 26129 Oldenburg, Germany. E-mail: constantin.junk@forwind.de

Abstract

The objective of this paper is to compare probabilistic 100-m wind speed forecasts, which are relevant for wind energy applications, from different regional and global ensemble prediction systems (EPSs) at six measurement towers in central Europe and to evaluate the benefits of combining single-model ensembles into multimodel ensembles. The global 51-member EPS from the European Centre for Medium-Range Weather Forecasts (ECMWF EPS) is compared against the Consortium for Small-Scale Modelling’s (COSMO) limited-area 16-member EPS (COSMO-LEPS) and a regional, high-resolution 20-member EPS centered over Germany (COSMO-DE EPS). The ensemble forecasts are calibrated with univariate (wind speed) ensemble model output statistics (EMOS) and bivariate (wind vector) recursive and adaptive calibration (AUV). The multimodel ensembles are constructed by pooling together raw or best-calibrated ensemble forecasts. An additional postprocessing of these multimodel ensembles with both EMOS and AUV is also tested. The best-performing calibration methodology for ECMWF EPS is AUV, while EMOS performs better than AUV for the calibration of COSMO-DE EPS. COSMO-LEPS has similar skill when calibrated with both EMOS and AUV. The AUV ECMWF EPS outperforms the EMOS COSMO-LEPS and COSMO-DE EPS for deterministic and probabilistic wind speed forecast skill. For most thresholds, ECMWF EPS has a comparable reliability and sharpness but higher discrimination ability. Multimodel ensembles, which are constructed by pooling together the best-calibrated EPSs, improve the skill relative to the AUV ECMWF EPS. An analysis of the error correlation among the EPSs indicates that multimodel ensemble skill can be considerably higher when the error correlation is low.

Denotes Open Access content.

Corresponding author address: Constantin Junk, ForWind—Center for Wind Energy Research, University of Oldenburg, Ammerländer Heerstrasse 136, 26129 Oldenburg, Germany. E-mail: constantin.junk@forwind.de
Save