• Daley, R., 1991: Atmospheric Data Analysis. Cambridge University Press, 457 pp.

  • Doviak, R. J., and Zrnic D. S. , 2006: Doppler Radar and Weather Observations. 2nd ed. Dover, 562 pp.

  • Fast, J. D., Newsom R. K. , Allwine K. J. , Xu Q. , Zhang P. , Copeland J. , and Sun J. , 2008: An evaluation of two NEXRAD wind retrieval methodologies and their use in atmospheric dispersion models. J. Appl. Meteor. Climatol., 47, 23512371, doi:10.1175/2008JAMC1853.1.

    • Search Google Scholar
    • Export Citation
  • Gao, J., and Coauthors, 2013: A real-time weather-adaptive 3DVAR analysis system for severe weather detections and warnings. Wea. Forecasting, 28, 727745, doi:10.1175/WAF-D-12-00093.1.

    • Search Google Scholar
    • Export Citation
  • Liu, S., Xue M. , and Xu Q. , 2007: Using wavelet analysis to detect tornadoes from Doppler radar radial-velocity observations. J. Atmos. Oceanic Technol., 24, 344359, doi:10.1175/JTECH1989.1.

    • Search Google Scholar
    • Export Citation
  • Lu, H., Xu Q. , Yao M. , and Gao S. , 2011: Time-expanded sampling for ensemble-based filters: Assimilation experiments with real radar observations. Adv. Atmos. Sci., 28, 743757, doi:10.1007/s00376-010-0021-4.

    • Search Google Scholar
    • Export Citation
  • Miller, M. L., Lakshmanan V. , and Smith T. M. , 2013: An automated method for depicting mesocyclone paths and intensities. Wea. Forecasting, 28, 570585, doi:10.1175/WAF-D-12-00065.1.

    • Search Google Scholar
    • Export Citation
  • Newman, J. F., Lakshmanan V. , Heinselman P. L. , Richman M. B. , and Smith T. M. , 2013: Range-correcting azimuthal shear in Doppler radar data. Wea. Forecasting, 28, 194211, doi:10.1175/WAF-D-11-00154.1.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., and Coauthors, 2014: Evaluation of single-Doppler radar wind retrievals in flat and complex terrain. J. Appl. Meteor. Climatol., 53, 19201931, doi:10.1175/JAMC-D-13-0297.1.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., Shapiro A. , Yu T.-Y. , Gao J. , and Xue M. , 2009: Using a low-order model to detect and characterize tornadoes in multiple-Doppler radar data. Mon. Wea. Rev., 137, 12301249, doi:10.1175/2008MWR2446.1.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., Shapiro A. , Biggerstaff M. I. , and Wurman J. M. , 2011: The VDAC technique: A variational method for detecting and characterizing convective vortices in multiple-Doppler radar data. Mon. Wea. Rev., 139, 25932613, doi:10.1175/2011MWR3638.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Elmore K. L. , 2004: The use of radial velocity derivatives to diagnose rotation and divergence. Preprints, 11th Conf. on Aviation, Range, and Aerospace, Hyannis, MA, Amer. Meteor. Soc., P5.6. [Available https://ams.confex.com/ams/pdfpapers/81827.pdf.]

  • Stumpf, G. J., Witt A. , Mitchell E. D. , Spencer P. L. , Johnson J. T. , Eilts M. D. , Thomas K. W. , and Burgess D. W. , 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304326, doi:10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, V. T., and Brown R. A. , 1992: Effects of radar proximity on single-Doppler velocity signatures of axisymmetric rotation and divergence. Mon. Wea. Rev., 120, 27982807, doi:10.1175/1520-0493(1992)120<2798:EORPOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., 2011: Measuring information content from observations for data assimilation: Spectral formulations and their implications to observational data compression. Tellus, 63A, 793804, doi:10.1111/j.1600-0870.2011.00524.x.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., and Wei L. , 2011: Measuring information content from observations for data assimilation: Utilities of spectral formulations for radar data compression. Tellus, 63A, 10141027, doi:10.1111/j.1600-0870.2011.00542.x.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., and Wei L. , 2013: Prognostic equation for radar radial velocity derived by considering atmospheric refraction and Earth curvature. J. Atmos. Sci., 70, 33283338, doi:10.1175/JAS-D-13-011.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., Nai K. , and Wei L. , 2007: An innovation method for estimating radar radial-velocity observation error and background wind error covariances. Quart. J. Roy. Meteor. Soc., 133, 407415, doi:10.1002/qj.21.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., Nai K. , Wei L. , Zhang P. , Liu S. , and Parrish D. , 2011: A VAD-based dealiasing method for radar velocity data quality control. J. Atmos. Oceanic Technol., 28, 5062, doi:10.1175/2010JTECHA1444.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., Nai K. , Liu S. , Karstens C. , Smith T. , and Zhao Q. , 2013: Improved Doppler velocity dealiasing for radar data assimilation and storm-scale vortex detection. Adv. Meteor., 2013, 562386, doi:10.1155/2013/562386.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., Wei L. , Nai K. , Liu S. , Rabin R. M. , and Zhao Q. , 2015: A radar wind analysis system for nowcast applications. Adv. Meteor., 2015, 264515, doi:10.1155/2015/264515.

    • Search Google Scholar
    • Export Citation
  • Zrnic, D. S., and Coauthors, 2007: Agile-beam phased array radar for weather observations. Bull. Amer. Meteor. Soc., 88, 17531766, doi:10.1175/BAMS-88-11-1753.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 80 62 4
PDF Downloads 60 50 3

Analyzing Vortex Winds in Radar-Observed Tornadic Mesocyclones for Nowcast Applications

View More View Less
  • 1 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 2 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A computationally efficient method is developed to analyze the vortex wind fields of radar-observed mesocyclones. The method has the following features. (i) The analysis is performed in a nested domain over the mesocyclone area on a selected tilt of radar low-elevation scan. (ii) The background error correlation function is formulated with a desired vortex-flow dependence in the cylindrical coordinates cocentered with the mesocyclone. (iii) The square root of the background error covariance matrix is derived analytically to precondition the cost function and thus enhance the computational efficiency. Using this method, the vortex wind analysis can be performed efficiently either in a stand-alone fashion or as an additional step of targeted finescale analysis in the existing radar wind analysis system developed for nowcast applications. The effectiveness and performance of the method are demonstrated by examples of analyzed wind fields for the tornadic mesocyclones observed by operational Doppler radars in Oklahoma on 24 May 2011 and 20 May 2013.

Corresponding author address: Qin Xu, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072-7326. E-mail: qin.xu@noaa.gov

Abstract

A computationally efficient method is developed to analyze the vortex wind fields of radar-observed mesocyclones. The method has the following features. (i) The analysis is performed in a nested domain over the mesocyclone area on a selected tilt of radar low-elevation scan. (ii) The background error correlation function is formulated with a desired vortex-flow dependence in the cylindrical coordinates cocentered with the mesocyclone. (iii) The square root of the background error covariance matrix is derived analytically to precondition the cost function and thus enhance the computational efficiency. Using this method, the vortex wind analysis can be performed efficiently either in a stand-alone fashion or as an additional step of targeted finescale analysis in the existing radar wind analysis system developed for nowcast applications. The effectiveness and performance of the method are demonstrated by examples of analyzed wind fields for the tornadic mesocyclones observed by operational Doppler radars in Oklahoma on 24 May 2011 and 20 May 2013.

Corresponding author address: Qin Xu, National Severe Storms Laboratory, 120 David L. Boren Blvd., Norman, OK 73072-7326. E-mail: qin.xu@noaa.gov
Save