• Arakawa, A., and Schubert W. H. , 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chan, J. C. L., and Gray W. M. , 1982: Tropical cyclone movement and surrounding flow relationships. Mon. Wea. Rev., 110, 13541374, doi:10.1175/1520-0493(1982)110<1354:TCMASF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, S., and Coauthors, 2003: COAMPS version 3 model description: General theory and equations. Naval Research Laboratory Tech. Rep. NRL/PU7500-04-448, 141 pp.

  • Chien, F.-C., and Kuo H.-C. , 2011: On the extreme rainfall of Typhoon Morakot (2009). J. Geophys. Res., 116, D05104, doi:10.1029/2010JD015092.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Westrick K. J. , and Mass C. F. , 1999: Evaluation of MM5 and Eta-10 precipitation forecasts over the Pacific Northwest during the cool season. Wea. Forecasting, 14, 137154, doi:10.1175/1520-0434(1999)014<0137:EOMAEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Daley, R., and Barker E. , 2001: NAVDAS: Formulation and diagnostics. Mon. Wea. Rev., 129, 869883, doi:10.1175/1520-0493(2001)129<0869:NFAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., Haus B. K. , Reul N. , Plant W. J. , Stiassnie M. , and Graber H. C. , 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and Coauthors, 2011: Real-time tropical cyclone prediction using COAMPS-TC. Atmospheric Science (AS) & Ocean Science (OS), K. Satake, Ed., Advances in Geosciences, Vol. 28, World Scientific, 15–28.

  • Doyle, J. D., and Coauthors, 2014: Tropical cyclone prediction using COAMPS-TC. Oceanography, 27, 104115, doi:10.5670/oceanog.2014.72.

    • Search Google Scholar
    • Export Citation
  • Evans, J. L., Holland G. L. , and Elsberry R. L. , 1991: Interactions between a barotropic vortex and an idealized subtropical ridge. Part I: Vortex motion. J. Atmos. Sci., 48, 301314, doi:10.1175/1520-0469(1991)048<0301:IBABVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fang, X., and Kuo Y.-H. , 2013: Improving ensemble-based quantitative precipitation forecasts for topography-enhanced typhoon heavy rainfall over Taiwan with a modified probability-matching technique. Mon. Wea. Rev., 141, 39083932, doi:10.1175/MWR-D-13-00012.1.

    • Search Google Scholar
    • Export Citation
  • Fang, X., Kuo Y.-H. , and Wang A. , 2011: The impacts of Taiwan topography on the predictability of Typhoon Morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Wea. Forecasting, 26, 613633, doi:10.1175/WAF-D-10-05020.1.

    • Search Google Scholar
    • Export Citation
  • Fu, Q., and Liou K. N. , 1993: Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 20082025, doi:10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hall, J. D., Xue M. , Ran L. , and Leslie L. M. , 2013: High-resolution modeling of Typhoon Morakot (2009): Vortex Rossby waves and their role in extreme precipitation over Taiwan. J. Atmos. Sci., 70, 163186, doi:10.1175/JAS-D-11-0338.1.

    • Search Google Scholar
    • Export Citation
  • Han, J., and Pan H.-L. , 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520533, doi:10.1175/WAF-D-10-05038.1.

    • Search Google Scholar
    • Export Citation
  • Hendricks, E. A., Moskaitis J. R. , Jin Y. , Hodur R. M. , Doyle J. D. , and Peng M. S. , 2011: Prediction and diagnosis of Typhoon Morakot (2009) using the Naval Research Laboratory’s mesoscale tropical cyclone model. Terr. Atmos. Oceanic Sci., 22, 579594, doi:10.3319/TAO.2011.05.30.01(TM).

    • Search Google Scholar
    • Export Citation
  • Hodur, R. M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Wea. Rev., 125, 14141430, doi:10.1175/1520-0493(1997)125<1414:TNRLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, T. F., and Rosmond T. E. , 1991: The description of the Navy Operational Global Atmospheric Prediction System’s spectral forecast model. Mon. Wea. Rev., 119, 17861815, doi:10.1175/1520-0493(1991)119<1786:TDOTNO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., Thompson W. T. , Wang S. , and Liou C.-S. , 2007: A numerical study of the effect of dissipative heating on tropical cyclone intensity. Wea. Forecasting, 22, 950966, doi:10.1175/WAF1028.1.

    • Search Google Scholar
    • Export Citation
  • Jin, Y., and Coauthors, 2014: The impact of ice phase cloud parameterizations on tropical cyclone prediction. Mon. Wea. Rev., 142, 606625, doi:10.1175/MWR-D-13-00058.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Klemp, J. B., and Wilhelmson R. B. , 1978: The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35, 10701096, doi:10.1175/1520-0469(1978)035<1070:TSOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liang, J., Wu L. , Ge X. , and Wu C.-C. , 2011: Monsoonal influence on Typhoon Morakot (2009). Part II: Numerical study. J. Atmos. Sci., 68, 22222235, doi:10.1175/2011JAS3731.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., Farley R. D. , and Orville H. D. , 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 10651092, doi:10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liou, C.-S., and Sashegyi K. D. , 2011: On the initialization of tropical cyclones with a three-dimensional variational analysis. Nat. Hazards, 63, 13751391, doi:10.1007/s11069-011-9838-0.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulence closure for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Nguyen, H. V., and Chen Y.-L. , 2011: High resolution initialization and simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139, 14631491, doi:10.1175/2011MWR3505.1.

    • Search Google Scholar
    • Export Citation
  • Pan, H.-L., and Wu W.-S. , 1995: Implementing a mass flux convective parameterization package for the NMC medium-range forecast model. NMC Office Note 409, 40 pp. [Available online at http://www.lib.ncep.noaa.gov/ncepofficenotes/files/01408A42.pdf.]

  • Rutledge, S. A., and Hobbs P. V. , 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the seeder-feeder process in warm-frontal rainbands. J. Atmos. Sci., 40, 11851206, doi:10.1175/1520-0469(1983)040<1185:TMAMSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., Liu Z. , Chen Y. , and Huang X.-Y. , 2012: Impact of assimilating microwave radiances with a limited-area ensemble data assimilation system on forecasts of Typhoon Morakot. Wea. Forecasting, 27, 424437, doi:10.1175/WAF-D-11-00033.1.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., Zhong Z. , Lu W. , and Hu Y. , 2014: Why are tropical cyclone tracks over the western North Pacific sensitive to the cumulus parameterization scheme in regional climate modeling? A case study for Megi (2010). Mon. Wea. Rev., 142, 12401249, doi:10.1175/MWR-D-13-00232.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Rasmussen R. M. , and Manning K. , 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., 2014: On the calculation and correction of equitable threat score for model quantitative precipitation forecasts for small verification areas: The example of Taiwan. Wea. Forecasting, 29, 788798, doi:10.1175/WAF-D-13-00087.1.

    • Search Google Scholar
    • Export Citation
  • Wang, C.-C., Kuo H.-C. , Chen Y.-H. , Huang H.-L. , Chung C.-H. , and Tsuboki K. , 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 31723196, doi:10.1175/JAS-D-11-0346.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., 2013: Typhoon Morakot: Key findings from the journal TAO for improving prediction of extreme rains at landfall. Bull. Amer. Meteor. Soc., 94, 155160, doi:10.1175/BAMS-D-11-00155.1.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and Kuo Y.-H. , 1999: Typhoons affecting Taiwan: Currently understanding and future challenges. Bull. Amer. Meteor. Soc., 80, 6780, doi:10.1175/1520-0477(1999)080<0067:TATCUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., Yen T.-H. , Kuo Y.-H. , and Wang W. , 2002: Rainfall simulation associated with Typhoon Herb (1996) near Taiwan. Part I: The topographic effect. Wea. Forecasting, 17, 10011015, doi:10.1175/1520-0434(2003)017<1001:RSAWTH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, L., Liang J. , and Wu C.-C. , 2011: Monsoonal influence on Typhoon Morakot (2009). Part I: Observational analysis. J. Atmos. Sci., 68, 22082221, doi:10.1175/2011JAS3730.1.

    • Search Google Scholar
    • Export Citation
  • Xie, B., and Zhang F. , 2012: Impacts of typhoon track and island topography on the heavy rainfalls in Taiwan associated with Morakot (2009). Mon. Wea. Rev., 140, 33793394, doi:10.1175/MWR-D-11-00240.1.

    • Search Google Scholar
    • Export Citation
  • Yen, T.-H., Wu C.-C. , and Lien G.-Y. , 2011: Rainfall simulations of Typhoon Morakot with controlled translation speed based on EnKF data assimilation. Terr. Atmos. Oceanic Sci., 22, 647660, doi:10.3319/TAO.2011.07.05.01(TM).

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 59 6
PDF Downloads 81 32 8

Numerical Simulations of Typhoon Morakot (2009) Using a Multiply Nested Tropical Cyclone Prediction Model

View More View Less
  • 1 Marine Meteorology Division, Naval Research Laboratory, Monterey, California
  • | 2 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

High-impact Typhoon Morakot (2009) was investigated using a multiply nested regional tropical cyclone prediction model. In the numerical simulations, the horizontal grid spacing, cumulus parameterizations, and microphysical parameterizations were varied, and the sensitivity of the track, intensity, and quantitative precipitation forecasts (QPFs) was examined. With regard to horizontal grid spacing, it is found that convective-permitting (5 km) resolution is necessary for a reasonably accurate QPF, while little benefit is gained through the use of a fourth domain at 1.67-km horizontal resolution. Significant sensitivity of the track forecast was found to the cumulus parameterization, which impacted the model QPFs. In particular, the simplified Arakawa–Schubert parameterization tended to erroneously regenerate the remnants of Tropical Storm Goni to the southwest of Morakot, affecting the large-scale steering flow and the track of Morakot. Strong sensitivity of the QPFs to the microphysical parameterization was found, with the track and intensity showing little sensitivity. It is also found that Morakot’s accumulated precipitation was reasonably predictable, with the control simulation producing an equitable threat score of 0.56 for the 3-day accumulated precipitation using a threshold of 500 mm. This high predictability of precipitation is due in part to more predictable large-scale and topographic forcing.

Current affiliation: Department of Meteorology, Naval Postgraduate School, Monterey, California.

Corresponding author address: Eric A. Hendricks, Dept. of Meteorology, Naval Postgraduate School, Rm. 255, 589 Dyer Rd., Monterey, CA 93943. E-mail: eahendri1@nps.edu

Abstract

High-impact Typhoon Morakot (2009) was investigated using a multiply nested regional tropical cyclone prediction model. In the numerical simulations, the horizontal grid spacing, cumulus parameterizations, and microphysical parameterizations were varied, and the sensitivity of the track, intensity, and quantitative precipitation forecasts (QPFs) was examined. With regard to horizontal grid spacing, it is found that convective-permitting (5 km) resolution is necessary for a reasonably accurate QPF, while little benefit is gained through the use of a fourth domain at 1.67-km horizontal resolution. Significant sensitivity of the track forecast was found to the cumulus parameterization, which impacted the model QPFs. In particular, the simplified Arakawa–Schubert parameterization tended to erroneously regenerate the remnants of Tropical Storm Goni to the southwest of Morakot, affecting the large-scale steering flow and the track of Morakot. Strong sensitivity of the QPFs to the microphysical parameterization was found, with the track and intensity showing little sensitivity. It is also found that Morakot’s accumulated precipitation was reasonably predictable, with the control simulation producing an equitable threat score of 0.56 for the 3-day accumulated precipitation using a threshold of 500 mm. This high predictability of precipitation is due in part to more predictable large-scale and topographic forcing.

Current affiliation: Department of Meteorology, Naval Postgraduate School, Monterey, California.

Corresponding author address: Eric A. Hendricks, Dept. of Meteorology, Naval Postgraduate School, Rm. 255, 589 Dyer Rd., Monterey, CA 93943. E-mail: eahendri1@nps.edu
Save