Colorado Plowable Hailstorms: Synoptic Weather, Radar, and Lightning Characteristics

Evan A. Kalina * NOAA/Earth System Research Laboratory/Physical Sciences Division, Boulder, Colorado
NOAA/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida

Search for other papers by Evan A. Kalina in
Current site
Google Scholar
PubMed
Close
,
Katja Friedrich Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado

Search for other papers by Katja Friedrich in
Current site
Google Scholar
PubMed
Close
,
Brian C. Motta NOAA/NWS/Office of the Chief Learning Officer, Boulder, Colorado

Search for other papers by Brian C. Motta in
Current site
Google Scholar
PubMed
Close
,
Wiebke Deierling National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Wiebke Deierling in
Current site
Google Scholar
PubMed
Close
,
Geoffrey T. Stano ** NASA Short-term Prediction Research and Transition Center (SPoRT)/ENSCO, Inc., Huntsville, Alabama

Search for other papers by Geoffrey T. Stano in
Current site
Google Scholar
PubMed
Close
, and
Nezette N. Rydell NOAA/NWS, Boulder, Colorado

Search for other papers by Nezette N. Rydell in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Synoptic weather, S-band dual-polarization radar, and total lightning observations are analyzed from four thunderstorms that produced “plowable” hail accumulations of 15–60 cm in localized areas of the Colorado Front Range. Results indicate that moist, relatively slow (5–15 m s−1) southwesterly-to-westerly flow at 500 hPa and postfrontal low-level upslope flow, with 2-m dewpoint temperatures of 11°–19°C at 1200 LST, were present on each plowable hail day. This pattern resulted in column-integrated precipitable water values that were 132%–184% of the monthly means and freezing-level heights that were 100–700 m higher than average. Radar data indicate that between one and three maxima in reflectivity Z (68–75 dBZ) and 50-dBZ echo-top height (11–15 km MSL) occurred over the lifetime of each hailstorm. These maxima, which imply an enhancement in updraft strength, resulted in increased graupel and hail production and accumulating hail at the surface within 30 min of the highest echo tops. The hail core had Z ~ 70 dBZ, differential reflectivity ZDR from 0 to −4 dB, and correlation coefficient ρHV of 0.80–0.95. Time–height plots reveal that these minima in ZDR and ρHV gradually descended to the surface after originating at heights of 6–10 km MSL ~15–60 min prior to accumulating hailfall. Hail accumulations estimated from the radar data pinpoint the times and locations of plowable hail, with depths greater than 5 cm collocated with the plowable hail reports. Three of the four hail events were accompanied by lightning flash rates near the maximum observed thus far within the thunderstorm.

Corresponding author address: Evan A. Kalina, NOAA/Earth System Research Laboratory/Physical Sciences Division, 325 Broadway St., Boulder, CO 80305. E-mail: evan.kalina@noaa.gov

Abstract

Synoptic weather, S-band dual-polarization radar, and total lightning observations are analyzed from four thunderstorms that produced “plowable” hail accumulations of 15–60 cm in localized areas of the Colorado Front Range. Results indicate that moist, relatively slow (5–15 m s−1) southwesterly-to-westerly flow at 500 hPa and postfrontal low-level upslope flow, with 2-m dewpoint temperatures of 11°–19°C at 1200 LST, were present on each plowable hail day. This pattern resulted in column-integrated precipitable water values that were 132%–184% of the monthly means and freezing-level heights that were 100–700 m higher than average. Radar data indicate that between one and three maxima in reflectivity Z (68–75 dBZ) and 50-dBZ echo-top height (11–15 km MSL) occurred over the lifetime of each hailstorm. These maxima, which imply an enhancement in updraft strength, resulted in increased graupel and hail production and accumulating hail at the surface within 30 min of the highest echo tops. The hail core had Z ~ 70 dBZ, differential reflectivity ZDR from 0 to −4 dB, and correlation coefficient ρHV of 0.80–0.95. Time–height plots reveal that these minima in ZDR and ρHV gradually descended to the surface after originating at heights of 6–10 km MSL ~15–60 min prior to accumulating hailfall. Hail accumulations estimated from the radar data pinpoint the times and locations of plowable hail, with depths greater than 5 cm collocated with the plowable hail reports. Three of the four hail events were accompanied by lightning flash rates near the maximum observed thus far within the thunderstorm.

Corresponding author address: Evan A. Kalina, NOAA/Earth System Research Laboratory/Physical Sciences Division, 325 Broadway St., Boulder, CO 80305. E-mail: evan.kalina@noaa.gov
Save
  • Aydin, K., Seliga T. A. , and Balaji V. , 1986: Remote sensing of hail with a dual-linear polarization radar. J. Climate Appl. Meteor., 25, 14751484, doi:10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and Zrnić D. S. , 1990a: Estimation of rain and hail rates in mixed-phase precipitation. J. Atmos. Sci., 47, 565583, doi:10.1175/1520-0469(1990)047<0565:EORAHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Balakrishnan, N., and Zrnić D. S. , 1990b: Use of polarization to characterize precipitation and discriminate large hail. J. Atmos. Sci., 47, 15251540, doi:10.1175/1520-0469(1990)047<1525:UOPTCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berthet, C., Wesolek E. , Dessens J. , and Sanchez J. L. , 2013: Extreme hail day climatology in southwestern France. Atmos. Res., 123, 139150, doi:10.1016/j.atmosres.2012.10.007.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., Zhang G. , and Vivekanandan J. , 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674685, doi:10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and Chandrasekar V. , 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Browning, K. A., 1963: The growth of large hail within a steady updraught. Quart. J. Roy. Meteor. Soc., 89, 490506, doi:10.1002/qj.49708938206.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1965: Some inferences about the updraft within a severe local storm. J. Atmos. Sci., 22, 669677, doi:10.1175/1520-0469(1965)022<0669:SIATUW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Ludlam F. H. , 1962: Airflow in convective storms. Quart. J. Roy. Meteor. Soc., 88, 117135, doi:10.1002/qj.49708837602.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Foote G. B. , 1976: Airflow and hail growth in supercell storms and some implications for hail suppression. Quart. J. Roy. Meteor. Soc., 102, 499533, doi:10.1002/qj.49710243303.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and Rutledge S. A. , 1996: A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteor. Atmos. Phys., 59, 3364, doi:10.1007/BF01032000.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and Rutledge S. A. , 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103, 13 97914 000, doi:10.1029/97JD02626.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1967: Areal-temporal variations of hail intensity in Illinois. J. Appl. Meteor., 6, 536541, doi:10.1175/1520-0450(1967)006<0536:ATVOHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chappell, C. F., and Rodgers D. M. , 1988: Meteorological analysis of the Cheyenne, Wyoming, flash flood and hailstorm of 1 August 1985. NOAA Tech. Rep. ERL 435-FSL 1, 51 pp. [Available online at http://docs.lib.noaa.gov/noaa_documents/OAR/FSL/TR_ERL-435_FSL-1.pdf.]

  • Darden, C. B., Nadler D. J. , Carcione B. C. , Blakeslee R. J. , Stano G. T. , and Buechler D. E. , 2010: Utilizing total lightning information to diagnose convective trends. Bull. Amer. Meteor. Soc., 91, 167175, doi:10.1175/2009BAMS2808.1.

    • Search Google Scholar
    • Export Citation
  • Das, P., 1962: Influence of the wind shear on the growth of hail. J. Atmos. Sci., 19, 407414, doi:10.1175/1520-0469(1962)019<0407:IOWSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., and Petersen W. A. , 2008: Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113, D16210, doi:10.1029/2007JD009598.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., Petersen W. A. , Latham J. , Ellis S. , and Christian H. J. , 2008: The relationship between lightning activity and ice fluxes in thunderstorms. J. Geophys. Res., 113, D15210, doi:10.1029/2007JD009700.

    • Search Google Scholar
    • Export Citation
  • Depue, T. K., Kennedy P. C. , and Rutledge S. A. , 2007: Performance of the hail differential reflectivity (HDR) polarimetric hail indicator. J. Appl. Meteor. Climatol., 46, 12901301, doi:10.1175/JAM2529.1.

    • Search Google Scholar
    • Export Citation
  • Dessens, H., 1960: Severe hailstorms are associated with very strong winds between 6,000 and 12,000 meters. Physics of Precipitation, Geophys. Monogr., No. 5, Amer. Geophys. Union, 333–338.

  • Dessens, J., 1986: Hail in southwestern France. I: Hailfall characteristics and hailstorm environment. J. Climate Appl. Meteor., 25, 3547, doi:10.1175/1520-0450(1986)025<0035:HISFIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dye, J. E., Winn W. P. , Jones J. J. , and Breed D. W. , 1989: The electrification of New Mexico thunderstorms: 1. Relationship between precipitation development and the onset of electrification. J. Geophys. Res., 94, 86438656, doi:10.1029/JD094iD06p08643.

    • Search Google Scholar
    • Export Citation
  • Emersic, C., Heinselman P. L. , MacGorman D. R. , and Bruning E. C. , 2011: Lightning activity in a hail-producing storm observed with phased-array radar. Mon. Wea. Rev., 139, 18091825, doi:10.1175/2010MWR3574.1.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., Kalina E. A. , Aikins J. D. , Gochis D. , and Rasmussen R. , 2016a: Precipitation and cloud structures of intense rain during the 2013 Great Colorado Flood. J. Hydrometeor., 17, 2752, doi:10.1175/JHM-D-14-0157.1.

    • Search Google Scholar
    • Export Citation
  • Friedrich, K., Kalina E. A. , Aikins J. D. , Steiner M. , Gochis D. , Kucera P. A. , Ikeda K. , and Sun J. , 2016b: Raindrop size distribution and rain characteristics during the 2013 Great Colorado Flood. J. Hydrometeor., 17, 5372, doi:10.1175/JHM-D-14-0184.1.

    • Search Google Scholar
    • Export Citation
  • Giuli, D., Gherardelli M. , Freni A. , Seliga T. A. , and Aydin K. , 1991: Rainfall and clutter discrimination by means of dual-linear polarization radar measurements. J. Atmos. Oceanic Technol., 8, 777789, doi:10.1175/1520-0426(1991)008<0777:RACDBM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gochis, D. J., and Coauthors, 2015: The Great Colorado Flood of September 2013. Bull. Amer. Meteor. Soc., 96, 14611487, doi:10.1175/BAMS-D-13-00241.1.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2005: The North Alabama Lightning Mapping Array: Recent severe storm observations and future prospects. Atmos. Res., 76, 423437, doi:10.1016/j.atmosres.2004.11.035.

    • Search Google Scholar
    • Export Citation
  • Grahame, N., Riddaway B. , Eadie A. , Hall B. , and McCallum E. , 2009: Exceptional hailstorm hits Ottery St Mary on 30 October 2008. Weather, 64 (10), 255263, doi:10.1002/wea.458.

    • Search Google Scholar
    • Export Citation
  • Gremillion, M. S., and Orville R. E. , 1999: Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D. Wea. Forecasting, 14, 640649, doi:10.1175/1520-0434(1999)014<0640:TCOCTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herzegh, P. H., and Jameson A. R. , 1992: Observing precipitation through dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 73, 13651374, doi:10.1175/1520-0477(1992)073<1365:OPTDPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and Miller K. M. , 1988: Water vapor and ice mass transported into the anvils of CCOPE thunderstorms: Comparison with storm influx and rainout. J. Atmos. Sci., 45, 35013514, doi:10.1175/1520-0469(1988)045<3501:WVAIMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., and Bringi V. N. , 2000: The effects of three-body scattering on differential reflectivity signatures. J. Atmos. Oceanic Technol., 17, 5161, doi:10.1175/1520-0426(2000)017<0051:TEOTBS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A., and Blackman T. , 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor., 41, 286297, doi:10.1175/1520-0450(2002)041<0286:TNTRRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., Rutledge S. A. , Dolan B. , and Thaler E. , 2014: Observations of the 14 July 2011 Fort Collins hailstorm: Implications for WSR-88D-based hail detection and warnings. Wea. Forecasting, 29, 623638, doi:10.1175/WAF-D-13-00075.1.

    • Search Google Scholar
    • Export Citation
  • Knight, C. A., and Knight N. C. , 2001: Hailstorms. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 223–249.

  • Knight, C. A., Schlatter P. T. , and Schlatter T. W. , 2008: An unusual hailstorm on 24 June 2006 in Boulder, Colorado. Part II: Low-density growth of hail. Mon. Wea. Rev., 136, 28332848, doi:10.1175/2008MWR2338.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and Ryzhkov A. V. , 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., Picca J. , Ganson S. , Ryzhkov A. , and Zrnić D. , 2010: Three body scattering signatures in polarimetric radar data. NOAA/NSSL Tech. Rep., 12 pp. [Available online at http://www.nssl.noaa.gov/publications/wsr88d_reports/FINAL_TBSS.doc.]

  • Lee, W.-C., Carbone R. E. , and Wakimoto R. M. , 1992: The evolution and structure of a “bow-echo–microburst” event. Part I: The microburst. Mon. Wea. Rev., 120, 21882210, doi:10.1175/1520-0493(1992)120<2188:TEASOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lesins, G. B., and List R. , 1986: Sponginess and drop shedding of gyrating hailstones in a pressure-controlled icing wind tunnel. J. Atmos. Sci., 43, 28132825, doi:10.1175/1520-0469(1986)043<2813:SADSOG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Longley, R. W., and Thompson C. E. , 1965: A study of causes of hail. J. Appl. Meteor., 4, 6982, doi:10.1175/1520-0450(1965)004<0069:ASOCOH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and Palmer W. M. K. , 1948: The distribution of raindrops with size. J. Meteor., 5, 165166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., and Berry E. X. , 1971: The airflow within the weak echo region of an Alberta hailstorm. J. Appl. Meteor., 10, 487492, doi:10.1175/1520-0450(1971)010<0487:TAWTWE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., Auer A. H. Jr., and Veal D. L. , 1972: Locating the organized updraft on severe thunderstorms. J. Appl. Meteor., 11, 236238, doi:10.1175/1520-0450(1972)011<0236:LTOUOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., Bailey J. C. , Hall J. , Goodman S. J. , Blakeslee R. J. , and Buechler D. E. , 2005: A flash clustering algorithm for North Alabama Lightning Mapping Array data. Preprints, Conf. on Meteorological Applications of Lightning Data, San Diego, CA, Amer. Meteor. Soc., 5.3. [Available online at https://ams.confex.com/ams/Annual2005/techprogram/paper_84373.htm.]

  • McCaul, E. W., Jr., Goodman S. J. , LaCasse K. M. , and Cecil D. J. , 2009: Forecasting lightning threat using cloud-resolving model simulations. Wea. Forecasting, 24, 709729, doi:10.1175/2008WAF2222152.1.

    • Search Google Scholar
    • Export Citation
  • Nelson, S. P., 1983: The influence of storm flow structure on hail growth. J. Atmos. Sci., 40, 19651983, doi:10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • OFCM, 2013: Doppler radar meteorological observations: Part A. System concepts, responsibilities, and procedures. Federal Meteorological Handbook No. 11, FCM-H11A-2013, Office of the Federal Coordinator for Meteorological Services and Supporting Research, 21 pp. [Available online at http://www.ofcm.gov/fmh11/fmh11.htm.]

  • Pappas, J. J., 1962: A simple yes–no hail forecasting technique. J. Appl. Meteor., 1, 353354, doi:10.1175/1520-0450(1962)001<0353:ASYNHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Park, H., Ryzhkov A. V. , Zrnić D. S. , and Kim K. , 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Paul, A. H., 1980: Hailstorms in southern Saskatchewan. J. Appl. Meteor., 19, 305313, doi:10.1175/1520-0450(1980)019<0305:HISS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pereyra, R. G., Avila E. E. , Castellano N. E. , and Saunders C. P. R. , 2000: A laboratory study of graupel charging. J. Geophys. Res., 105, 20 80320 812, doi:10.1029/2000JD900244.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and Klett J. D. , 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer Academic, 954 pp.

  • Rasmussen, R. M., and Heymsfield A. J. , 1987: Melting and shedding of graupel and hail. Part I: Model physics. J. Atmos. Sci., 44, 27542763, doi:10.1175/1520-0469(1987)044<2754:MASOGA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rison, W., Krehbiel P. R. , Thomas R. J. , Rodeheffer D. , and Fuchs B. , 2012: The Colorado Lightning Mapping Array. 2012 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, AE23B-0319. [Available online at http://fallmeeting.agu.org/2012/eposters/eposter/ae23b-0319.]

  • Rosenfeld, D., Wolff D. B. , and Atlas D. , 1993: General probability-matched relations between radar reflectivity and rain rate. J. Appl. Meteor., 32, 5072, doi:10.1175/1520-0450(1993)032<0050:GPMRBR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and Fuelberg H. E. , 2013: Documenting storm severity in the mid-Atlantic region using lightning and radar information. Mon. Wea. Rev., 141, 31863202, doi:10.1175/MWR-D-12-00287.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., Zrnić D. , Krause J. , Kumjian M. , and Ganson S. , 2010: Discrimination between large and small hail: Final report. NOAA/NSSL Tech. Rep., 18 pp. [Available online at https://www.nssl.noaa.gov/publications/wsr88d_reports/FINAL_HailSize.doc.]

  • Ryzhkov, A., Kumjian M. R. , Ganson S. M. , and Khain A. P. , 2013a: Polarimetric radar characteristics of melting hail. Part I: Theoretical simulations using spectral microphysical modeling. J. Appl. Meteor. Climatol., 52, 28492870, doi:10.1175/JAMC-D-13-073.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., Kumjian M. R. , Ganson S. M. , and Zhang P. , 2013b: Polarimetric radar characteristics of melting hail. Part II: Practical implications. J. Appl. Meteor. Climatol., 52, 28712886, doi:10.1175/JAMC-D-13-074.1.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., 1993: A review of thunderstorm electrification processes. J. Appl. Meteor., 32, 642655, doi:10.1175/1520-0450(1993)032<0642:AROTEP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., 2008: Charge separation mechanisms in clouds. Space Sci. Rev., 137, 335353, doi:10.1007/s11214-008-9345-0.

  • Saunders, C. P. R., and Brooks I. M. , 1992: The effects of high liquid water content on thunderstorm charging. J. Geophys. Res., 97, 14 67114 676, doi:10.1029/92JD01186.

    • Search Google Scholar
    • Export Citation
  • Schlatter, P. T., Schlatter T. W. , and Knight C. A. , 2008: An unusual hailstorm on 24 June 2006 in Boulder, Colorado. Part I: Mesoscale setting and radar features. Mon. Wea. Rev., 136, 28132832, doi:10.1175/2008MWR2337.1.

    • Search Google Scholar
    • Export Citation
  • Schlatter, T. W., and Doesken N. , 2010: Deep hail: Tracking an elusive phenomenon. Weatherwise, 63 (5), 3541, doi:10.1080/00431672.2010.503841.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., Petersen W. A. , and Carey L. D. , 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 25432563, doi:10.1175/2009JAMC2237.1.

    • Search Google Scholar
    • Export Citation
  • Scott, G. D., and Kilgour D. M. , 1969: The density of random close packing of spheres. J. Phys. D: Appl. Phys., 2, 863866, doi:10.1088/0022-3727/2/6/311.

    • Search Google Scholar
    • Export Citation
  • Shafer, M. A., MacGorman D. R. , and Carr F. H. , 2000: Cloud-to-ground lightning throughout the lifetime of a severe storm system in Oklahoma. Mon. Wea. Rev., 128, 17981816, doi:10.1175/1520-0493(2000)128<1798:CTGLTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., Bluestein H. B. , Zhang G. , and Frasier S. J. , 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001, doi:10.1175/2010JTECHA1356.1.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 17521774, doi:10.1175/1520-0469(1987)044<1752:AMOIDD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Takahashi, T., and Miyawaki K. , 2002: Reexamination of riming electrification in a wind tunnel. J. Atmos. Sci., 59, 10181025, doi:10.1175/1520-0469(2002)059<1018:ROREIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., Miller L. J. , Wiens K. C. , and Rutledge S. A. , 2005: The 29 June 2000 supercell observed during STEPS. Part I: Kinematics and microphysics. J. Atmos. Sci., 62, 41274150, doi:10.1175/JAS3585.1.

    • Search Google Scholar
    • Export Citation
  • Tessendorf, S. A., Wiens K. C. , and Rutledge S. A. , 2007: Radar and lightning observations of the 3 June 2000 electrically inverted storm from STEPS. Mon. Wea. Rev., 135, 36653681, doi:10.1175/2006MWR1953.1.

    • Search Google Scholar
    • Export Citation
  • Thomas, R. J., Krehbiel P. R. , Rison W. , Hunyady S. J. , Winn W. P. , Hamlin T. , and Harlin J. , 2004: Accuracy of the Lightning Mapping Array. J. Geophys. Res., 109, D14207, doi:10.1029/2004JD004549.

    • Search Google Scholar
    • Export Citation
  • Vincent, B. R., Carey L. D. , Schneider D. , Keeter K. , and Gonski R. , 2003: Using WSR-88D reflectivity data for the prediction of cloud-to-ground lightning: A central North Carolina study. Natl. Wea. Dig., 27, 3544.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., Ellis S. M. , Oye R. , Zrnić D. S. , Ryzhkov A. V. , and Straka J. , 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and Klemp J. B. , 1984: The structure and classification of numerically simulated convective storms in directionally varying wind shears. Mon. Wea. Rev., 112, 24792498, doi:10.1175/1520-0493(1984)112<2479:TSACON>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., 2005: Kinematic, microphysical, and electrical structure and evolution of thunderstorms during the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Ph.D. thesis, Colorado State University, 295 pp.

  • Wiens, K. C., Rutledge S. A. , and Tessendorf S. A. , 2005: The 29 June 2000 supercell observed during steps. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, doi:10.1175/JAS3615.1.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., Zhang R. , and Rydock J. , 1991: Mixed-phase microphysics and cloud electrification. J. Atmos. Sci., 48, 21952203, doi:10.1175/1520-0469(1991)048<2195:MPMACE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51, 245264, doi:10.1016/S0169-8095(99)00011-3.

    • Search Google Scholar
    • Export Citation
  • Wojtiw, L., 1975: Climatic summaries of hailfall in central Alberta (1957–73). Atmospheric Science Rep. 75-1, Alberta Research, Edmonton, AB, Canada, 102 pp.

  • Xie, B., Zhang Q. , and Wang Y. , 2010: Observed characteristics of hail size in four regions in China during 1980–2005. J. Climate, 23, 49734982, doi:10.1175/2010JCLI3600.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., Yuter S. E. , Houze R. A. , and Kingsmill D. E. , 2001: Microphysics of the rapid development of heavy convective precipitation. Mon. Wea. Rev., 129, 18821904, doi:10.1175/1520-0493(2001)129<1882:MOTRDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., Ray P. S. , and Knight N. C. , 1983: Hail growth in an Oklahoma multicell storm. J. Atmos. Sci., 40, 17681791, doi:10.1175/1520-0469(1983)040<1768:HGIAOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., 1987: Three-body scattering produces precipitation signature of special diagnostic value. Radio Sci., 22, 7686, doi:10.1029/RS022i001p00076.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1393 650 141
PDF Downloads 831 93 8