• Bishop, C. H., and Toth Z. , 1999: Ensemble transformation and adaptive observations. J. Atmos. Sci., 56, 17481765, doi:10.1175/1520-0469(1999)056<1748:ETAAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., Etherton B. , and Majumdar S. , 2001: Adaptive sampling with ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420436, doi:10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bishop, C. H., Holt T. R. , Nachamkin J. , Chen S. , McLay J. G. , Doyle J. D. , and Thompson W. T. , 2009: Regional ensemble forecasts using the ensemble transform technique. Mon. Wea. Rev., 137, 288298, doi:10.1175/2008MWR2559.1.

    • Search Google Scholar
    • Export Citation
  • Bonavita, M., Raynaud L. , and Isaksen L. , 2011: Estimating background-error variances with the ECMWF ensemble of data assimilations system: Some effects of ensemble size and day-to-day variability. Quart. J. Roy. Meteor. Soc., 137, 423434, doi:10.1002/qj.756.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Coauthors, 2010: The THORPEX Interactive Grand Global Ensemble (TIGGE). Bull. Amer. Meteor. Soc., 91, 10591072, doi:10.1175/2010BAMS2853.1.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., and Mylne K. R. , 2009: Ensemble transform Kalman filter perturbations for a regional ensemble prediction system. Quart. J. Roy. Meteor. Soc., 135, 757766, doi:10.1002/qj.404.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., Arribas A. , Mylne K. R. , Robertson K. B. , and Beare S. E. , 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722, doi:10.1002/qj.234.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., and Palmer T. , 1995: The singular vector structure of the atmospheric general circulation. J. Atmos. Sci., 52, 14341456, doi:10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., Miller M. , and Palmer T. N. , 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 125, 28872908, doi:10.1002/qj.49712556006.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., Houtekamer P. L. , Toth Z. , Pellerin G. , Wei M. , and Zhu Y. , 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 10761097, doi:10.1175/MWR2905.1.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., Leutbecher M. , and Isaksen L. , 2008: Potential use of an ensemble of analyses in the ECMWF Ensemble Prediction System. Quart. J. Roy. Meteor. Soc., 134, 20512066, doi:10.1002/qj.346.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., Leutbecher M. , Isaksen L. , and Haseler J. , 2010: Combined use of EDA- and SV-based perturbations in the EPS. ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 22–28.

  • Caron, J. F., 2013: Mismatching perturbations at the lateral boundaries in limited-area ensemble forecasting: A case study. Mon. Wea. Rev., 141, 356374, doi:10.1175/MWR-D-12-00051.1.

    • Search Google Scholar
    • Export Citation
  • Du, J., and Tracton M. S. , 2001: Implementation of a real-time short-range ensemble forecasting system at NCEP: An update. Preprints, Ninth Conf. on Mesoscale Processes, Fort Lauderdale, FL, Amer. Meteor. Soc., 355356. [Available online at http://www.emc.ncep.noaa.gov/mmb/SREF/reference.html.]

  • Du, J., DiMego G. , Tracton M. S. , and Zhou B. , 2003: NCEP short-range ensemble forecasting (SREF) system: Multi-IC, multi-model and multi-physics approach. Research Activities in Atmospheric and Oceanic Modeling, J. Cote, Ed., CAS/JSC Working Group Numerical Experimentation (WGNE) Rep. 33, WMO/TD-No. 1161, 5.09–5.11.

  • Frogner, I. L., Haakenstad H. , and Iversen T. , 2006: Limited-area ensemble predictions at the Norwegian Meteorological Institute. Quart. J. Roy. Meteor. Soc., 132, 27852808, doi:10.1256/qj.04.178.

    • Search Google Scholar
    • Export Citation
  • Froude, L. S. R., 2010: TIGGE: Comparison of the prediction of Northern Hemisphere extratropical cyclones by different ensemble prediction systems. Wea. Forecasting, 25, 819836, doi:10.1175/2010WAF2222326.1.

    • Search Google Scholar
    • Export Citation
  • Garcia-Moya, J. A., Callado A. , Escriba P. , Santos C. , Santos-Munoz D. , and Simarro J. , 2011: Predictability of short-range forecasting: A multimodel approach. Tellus, 63A, 550563, doi:10.1111/j.1600-0870.2010.00506.x.

    • Search Google Scholar
    • Export Citation
  • Gebhardt, C., Theis S. E. , Paulat M. , and Ben Bouallègue Z. , 2011: Uncertainties in COSMO-DE precipitation forecasts introduced by model perturbations and variation of lateral boundaries. Atmos. Res., 100, 168177, doi:10.1016/j.atmosres.2010.12.008.

    • Search Google Scholar
    • Export Citation
  • Hacker, J. P., and Coauthors, 2011: The U.S. Air Force Weather Agency’s mesoscale ensemble: Scientific description and performance results. Tellus, 63A, doi:10.3402/tellusa.v63i3.15814.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Colucci S. J. , 1997: Verification of Eta–RSM short-range ensemble forecasts. Mon. Wea. Rev., 125, 13121327, doi:10.1175/1520-0493(1997)125<1312:VOERSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., 2000: Decomposition of the continuous ranked probability score for ensemble prediction systems. Wea. Forecasting, 15, 559570, doi:10.1175/1520-0434(2000)015<0559:DOTCRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, D., Toth Z. , Zhu Y. , and Yang W. , 2008: A stochastic parameterization scheme in NCEP global ensemble forecast system. Preprints, 19th Conf. on Probability and Statistics, New Orleans, LA, Amer. Meteor. Soc., 1.1. [Available online at http://ams.confex.com/ams/pdfpapers/134165.pdf.]

  • Isaksen, L., Bonavita M. , Buizza R. , Fisher M. , Haseler J. , Leutbecher M. , and Raynaud L. , 2010: Ensemble of data assimilations at ECMWF. ECMWF Tech. Memo. 636, 44 pp.

  • Iversen, T., Deckmyn A. , Santos C. , Sattler K. , Bremnes J. B. , Feddersen H. , and Frogner I. L. , 2011: Evaluation of ‘GLAMEPS’—A proposed multimodel EPS for short range forecasting. Tellus, 63A, 513530, doi:10.1111/j.1600-0870.2010.00507.x.

    • Search Google Scholar
    • Export Citation
  • Leutbecher, M., and Palmer T. , 2008: Ensemble forecasting. J. Comput. Phys., 227, 35153539, doi:10.1016/j.jcp.2007.02.014.

  • Li, X., Charron M. , Spacek L. , and Candille G. , 2008: A regional ensemble prediction system based on moist targeted singular vectors and stochastic parameter perturbation. Mon. Wea. Rev., 136, 443462, doi:10.1175/2007MWR2109.1.

    • Search Google Scholar
    • Export Citation
  • Magnusson, L., Leutbecher M. , and Källen E. , 2008: Comparison between singular vectors and breeding vectors as initial perturbations for the ECMWF Ensemble Prediction System. Mon. Wea. Rev., 136, 40924104, doi:10.1175/2008MWR2498.1.

    • Search Google Scholar
    • Export Citation
  • Marsigli, C., Boccanera F. , Montani A. , and Paccagnella T. , 2005: The COSMO-LEPS mesoscale ensemble system: Validation of the methodology and verification. Nonlinear Processes Geophys., 12, 527536, doi:10.5194/npg-12-527-2005.

    • Search Google Scholar
    • Export Citation
  • Montani, A., Cesari D. , Marsigli C. , and Paccagnella T. , 2011: Seven years of activity in the field of mesoscale ensemble forecasting by the COSMO-LEPS system: Main achievements and open challenges. Tellus, 63A, 605624, doi:10.1111/j.1600-0870.2010.00499.x.

    • Search Google Scholar
    • Export Citation
  • Palmer, T., Buizza R. , Doblas-Reyes F. , Jung T. , Leutbecher M. , Shutts G. , Steinheimer M. , and Weisheimer A. , 2009: Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 598, 42 pp.

  • Park, Y.-Y., Buizza R. , and Leutbecher M. , 2008: TIGGE: Preliminary results on comparing and combining ensembles. Quart. J. Roy. Meteor. Soc., 134, 20292050, doi:10.1002/qj.334.

    • Search Google Scholar
    • Export Citation
  • Smet, G., Termonia P. , and Deckmyn A. , 2012: Added economic value of limited area multi-EPS weather forecasting applications. Tellus, 64A, 18 901, doi:10.3402/tellusa.v64i0.18901.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., Bao J. W. , and Warner T. T. , 2000: Using initial condition and model physics perturbations in short-range ensemble simulations of mesoscale convective systems. Mon. Wea. Rev., 128, 20772107, doi:10.1175/1520-0493(2000)128<2077:UICAMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., Hakim G. J. , and Snyder C. , 2006: Boundary conditions for limited-area ensemble Kalman filters. Mon. Wea. Rev., 134, 24902502, doi:10.1175/MWR3187.1.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1993: Ensemble forecasting at NCEP: The generation of perturbation. Bull. Amer. Meteor. Soc., 74, 23172330, doi:10.1175/1520-0477(1993)074<2317:EFANTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319, doi:10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and Bishop C. , 2003: A comparison of breeding and ensemble Kalman filter ensemble forecast schemes. J. Atmos. Sci., 60, 1140–1158, doi:10.1175/1520-0469(2003)060<1140:ACOBAE>2.0.CO;2.

  • Wang, Y., Kann A. , Bellus M. , Pailleux J. , and Wittmann C. , 2010: A strategy for perturbing surface initial conditions in LAMEPS. Atmos. Sci. Lett., 11, 108113, doi:10.1002/asl.260.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., and Coauthors, 2011: The Central European limited-area ensemble forecasting system: ALADIN-LAEF. Quart. J. Roy. Meteor. Soc., 137, 483502, doi:10.1002/qj.751.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., Bellus M. , Geleyn J. F. , Ma X. , Tian W. , and Weidle F. , 2014: A new method for generating initial perturbations in a regional ensemble prediction system: Blending. Mon. Wea. Rev., 142, 20432059, doi:10.1175/MWR-D-12-00354.1.

    • Search Google Scholar
    • Export Citation
  • Warner, T., Peterson R. , and Treadon R. , 1997: A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction. Bull. Amer. Meteor. Soc., 78, 25992617, doi:10.1175/1520-0477(1997)078<2599:ATOLBC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wei, M., Toth Z. , Wobus R. , and Zhu Y. , 2008: Initial perturbations based on the ensemble transform (ET) technique in the NCEP global operational forecast system. Tellus, 60A, 6279, doi:10.1111/j.1600-0870.2007.00273.x.

    • Search Google Scholar
    • Export Citation
  • Weidle, F., Wang Y. , Tian W. , and Wang T. , 2013: Validation of strategies using clustering analysis of ECMWF-EPS for initial perturbations in a limited area model ensemble prediction system. Atmos.–Ocean, 51, 284295, doi:10.1080/07055900.2013.802217.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Zhang, H., Chen J. , Zhi X. , and Wang Y. , 2015: A comparison of ETKF and downscaling in a regional ensemble prediction system. Atmosphere, 6, 341360, doi:10.3390/atmos6030341.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 85 51 3
PDF Downloads 61 41 2

On the Impact of the Choice of Global Ensemble in Forcing a Regional Ensemble System

View More View Less
  • 1 Department of Forecasting Models, Central Institute for Meteorology and Geodynamics, Vienna, Austria
  • | 2 Royal Meteorological Institute, Brussels, Belgium
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

It is quite common that in a regional ensemble system the large-scale initial condition (IC) perturbations and the lateral boundary condition (LBC) perturbations are taken from a global ensemble prediction system (EPS). The choice of global EPS as a driving model can have a significant impact on the performance of the regional EPS. This study investigates the impact of large-scale IC/LBC perturbations obtained from different global EPSs on the forecast quality of a regional EPS. For this purpose several experiments are conducted where the Aire Limitée Adaption dynamique Développement International–Limited Area Ensemble Forecasting (ALADIN-LAEF) regional ensemble is forced by two of the world’s leading global ensembles, the European Centre for Medium-Range Weather Forecasts’ Ensemble Prediction System (ECMWF-EPS) and the Global Ensemble Forecasting System (GEFS) from the National Centers for Environmental Prediction (NCEP), which provide the IC and LBC perturbations. The investigation is carried out for a 51-day period during summer 2010 over central Europe. The results indicate that forcing of the regional ensemble with GEFS performs better for surface parameters, whereas at upper levels forcing with ECMWF-EPS is superior. Using perturbations from GEFS lead to a considerably higher spread in ALADIN-LAEF, which is beneficial near the surface where regional EPSs are usually underdispersive. At upper levels, forcing with GEFS leads to an overdispersion of ALADIN-LAEF as a result of the large spread of some parameters, where forcing ALADIN-LAEF with ECMWF-EPS provides statistically more reliable forecasts. The results indicate that the best global EPS might not always provide the best ICs and LBCs for a regional ensemble.

Corresponding author address: Yong Wang, Dept. of Forecasting Models, Zentralanstalt für Meteorologie und Geodynamik, Hohe Warte 38, A-1190 Vienna, Austria. E-mail: yong.wang@zamg.ac.at

Abstract

It is quite common that in a regional ensemble system the large-scale initial condition (IC) perturbations and the lateral boundary condition (LBC) perturbations are taken from a global ensemble prediction system (EPS). The choice of global EPS as a driving model can have a significant impact on the performance of the regional EPS. This study investigates the impact of large-scale IC/LBC perturbations obtained from different global EPSs on the forecast quality of a regional EPS. For this purpose several experiments are conducted where the Aire Limitée Adaption dynamique Développement International–Limited Area Ensemble Forecasting (ALADIN-LAEF) regional ensemble is forced by two of the world’s leading global ensembles, the European Centre for Medium-Range Weather Forecasts’ Ensemble Prediction System (ECMWF-EPS) and the Global Ensemble Forecasting System (GEFS) from the National Centers for Environmental Prediction (NCEP), which provide the IC and LBC perturbations. The investigation is carried out for a 51-day period during summer 2010 over central Europe. The results indicate that forcing of the regional ensemble with GEFS performs better for surface parameters, whereas at upper levels forcing with ECMWF-EPS is superior. Using perturbations from GEFS lead to a considerably higher spread in ALADIN-LAEF, which is beneficial near the surface where regional EPSs are usually underdispersive. At upper levels, forcing with GEFS leads to an overdispersion of ALADIN-LAEF as a result of the large spread of some parameters, where forcing ALADIN-LAEF with ECMWF-EPS provides statistically more reliable forecasts. The results indicate that the best global EPS might not always provide the best ICs and LBCs for a regional ensemble.

Corresponding author address: Yong Wang, Dept. of Forecasting Models, Zentralanstalt für Meteorologie und Geodynamik, Hohe Warte 38, A-1190 Vienna, Austria. E-mail: yong.wang@zamg.ac.at
Save