• Ashley, W. S., and Black A. W. , 2008: Fatalities associated with nonconvective high-wind events in the United States. J. Appl. Meteor. Climatol., 47, 717725, doi:10.1175/2007JAMC1689.1.

    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., and Gilson C. W. , 2009: A reassessment of U.S. lightning mortality. Bull. Amer. Meteor. Soc., 90, 15011518, doi:10.1175/2009BAMS2765.1.

    • Search Google Scholar
    • Export Citation
  • Bailey, W. G., Oke T. R. , and Rouse W. , 1997: Surface Climates of Canada. McGill-Queen’s University Press, 369 pp.

  • Benight, C., Gruntfest E. , and Sparks K. , 2004: Colorado wildfires 2002. Quick Response Research Rep. 167, Natural Hazards Center and University of Colorado, 9 pp. [Available online at http://www.colorado.edu/hazards/research/qr/qr167/qr167_mod.pdf.]

  • Black, A. W., and Ashley W. S. , 2010: Nontornadic convective wind fatalities in the United States. Nat. Hazards, 54, 355366, doi:10.1007/s11069-009-9472-2.

    • Search Google Scholar
    • Export Citation
  • Black, A. W., and Mote T. , 2015: Characteristics of winter-precipitation-related transportation fatalities in the United States. Wea. Climate Soc., 7, 133145, doi:10.1175/WCAS-D-14-00011.1.

    • Search Google Scholar
    • Export Citation
  • Dow, K., and Cutter S. L. , 1998: Crying wolf: Repeat responses to hurricane evacuation orders. Coastal Manage., 26, 237252, doi:10.1080/08920759809362356.

    • Search Google Scholar
    • Export Citation
  • Francis, J. K., and Gillespie A. J. , 1993: Relating gust speed to tree damage in Hurricane Hugo, 1989. J. Arboric., 19, 368373.

  • Galway, J. G., 1989: The evolution of severe thunderstorm criteria within the Weather Service. Wea. Forecasting, 4, 585592, doi:10.1175/1520-0434(1989)004<0585:TEOSTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gardiner, B., Peltola H. , and Kellomäki S. , 2000: Comparison of two models for predicting the critical wind speeds required to damage coniferous trees. Ecol. Modell., 129, 123, doi:10.1016/S0304-3800(00)00220-9.

    • Search Google Scholar
    • Export Citation
  • Knox, J. A., Frye J. D. , Durkee J. D. , and Fuhrmann C. M. , 2011: Non-convective high winds associated with extratropical cyclones. Geogr. Compass, 5, 6389, doi:10.1111/j.1749-8198.2010.00395.x.

    • Search Google Scholar
    • Export Citation
  • Lacke, M. C., Knox J. A. , Frye J. D. , Stewart A. E. , Durkee J. D. , Fuhrmann C. M. , and Dillingham S. M. , 2007: A climatology of cold-season nonconvective wind events in the Great Lakes region. J. Climate, 20, 60126022, doi:10.1175/2007JCLI1750.1.

    • Search Google Scholar
    • Export Citation
  • Layer, M., and Colle B. A. , 2015: Climatology and ensemble predictions of nonconvective high wind events in the New York City metropolitan region. Wea. Forecasting, 30, 270294, doi:10.1175/WAF-D-14-00057.1.

    • Search Google Scholar
    • Export Citation
  • LeClerc, J., and Joslyn S. , 2015: The cry wolf effect and weather-related decision making. Risk Anal., 35, 385395, doi:10.1111/risa.12336.

    • Search Google Scholar
    • Export Citation
  • López, R. E., Holle R. L. , Heitkamp T. A. , Boyson M. , Cherington M. , and Langford K. , 1993: The underreporting of lightning injuries and deaths in Colorado. Bull. Amer. Meteor. Soc., 74, 21712178, doi:10.1175/1520-0477(1993)074<2171:TUOLIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • López, R. E., Holle R. L. , and Heitkamp T. A. , 1995: Lightning casualties and property damage in Colorado from 1950 to 1991 based on Storm Data. Wea. Forecasting, 10, 114126, doi:10.1175/1520-0434(1995)010<0114:LCAPDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., Durre I. , Vose R. S. , Gleason B. E. , and Houston T. G. , 2012a: An overview of the Global Historical Climatology Network-Daily database. J. Atmos. Oceanic Technol., 29, 897910, doi:10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., and Coauthors, 2012b: Global Historical Climatology Network-Daily (GHCN-Daily), version 3.20. NOAA/National Climatic Data Center, accessed 15 March 2015, doi:10.7289/V5D21VHZ.

  • National Centers for Environmental Information, 2015: Storm Events Database. Accessed 22 February 2015. [Available online at http://www.ncdc.noaa.gov/stormevents/.]

  • National Oceanic and Atmospheric Administration, 2007: Storm data preparation. National Weather Service Instruction 10-1605, 97 pp. [Available online at http://www.ncdc.noaa.gov/stormevents/pd01016005curr.pdf.]

  • National Weather Service, 2015a: National Weather Service Glossary. [Available online at http://w1.weather.gov/glossary/.]

  • National Weather Service, 2015b: Non-precipitation weather hazards. NWS Operations Manual 92-6, W/OM11. [Available online at http://www.nws.noaa.gov/wsom/manual/archives/NC449206.HTML#d4-1.]

  • Oliver, H., and Mayhead G. , 1974: Wind measurements in a pine forest during a destructive gale. Forestry, 47, 185194, doi:10.1093/forestry/47.2.185.

    • Search Google Scholar
    • Export Citation
  • Peltola, H. M., 2006: Mechanical stability of trees under static loads. Amer. J. Bot., 93, 15011511, doi:10.3732/ajb.93.10.1501.

  • Pryor, S. C., Conrick R. , Miller C. , Tytell J. , and Barthelmie R. J. , 2014: Intense and extreme wind speeds observed by anemometer and seismic networks: An eastern U.S. case study. J. Appl. Meteor. Climatol., 53, 24172429, doi:10.1175/JAMC-D-14-0091.1.

    • Search Google Scholar
    • Export Citation
  • Read, J., and Stokes A. , 2006: Plant biomechanics in an ecological context. Amer. J. Bot., 93, 15461565, doi:10.3732/ajb.93.10.1546.

  • Ripberger, J. T., Silva C. L. , Jenkins‐Smith H. C. , Carlson D. E. , James M. , and Herron K. G. , 2015: False alarms and missed events: The impact and origins of perceived inaccuracy in tornado warning systems. Risk Anal., 35, 4456, doi:10.1111/risa.12262.

    • Search Google Scholar
    • Export Citation
  • Schwartz, R. M., and Schmidlin T. W. , 2002: Climatology of blizzards in the conterminous United States, 1959–2000. J. Climate, 15, 17651772, doi:10.1175/1520-0442(2002)015<1765:COBITC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trainor, J. E., Nagele D. , Philips B. , and Scott B. , 2015: Tornadoes, social science, and the false alarm effect. Wea. Climate Soc., 7, 333352, doi:10.1175/WCAS-D-14-00052.1.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., Wheatley D. M. , Atkins N. T. , Przybylinski R. W. , and Wolf R. , 2006: Buyer beware: Some words of caution on the use of severe wind reports in postevent assessment and research. Wea. Forecasting, 21, 408415, doi:10.1175/WAF925.1.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51, 245265, doi:10.1016/S0169-8095(99)00011-3.

    • Search Google Scholar
    • Export Citation
  • Witt, A., Eilts M. D. , Stumpf G. J. , Johnson J. T. , Mitchell E. D. W. , and Thomas K. W. , 1998a: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, doi:10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Witt, A., Eilts M. D. , Stumpf G. J. , Mitchell E. D. W. , Johnson J. , and Thomas K. W. , 1998b: Evaluating the performance of WSR-88D severe storm detection algorithms. Wea. Forecasting, 13, 513518, doi:10.1175/1520-0434(1998)013<0513:ETPOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 303 192 14
PDF Downloads 202 123 4

Maximum Wind Gusts Associated with Human-Reported Nonconvective Wind Events and a Comparison to Current Warning Issuance Criteria

View More View Less
  • 1 Department of Geography, The University of Georgia, Athens, Georgia
  • | 2 IIHR–Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa
  • | 3 Department of Geography, The University of Georgia, Athens, Georgia
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Nonconvective high winds are a deceptively hazardous meteorological phenomenon. Though the National Weather Service (NWS) possesses an array of products designed to alert the public to nonconvective wind potential, documentation justifying the choice of issuance thresholds is scarce. Measured wind speeds from the Global Historical Climatology Network (GHCN)-Daily dataset associated with human-reported nonconvective wind events from Storm Data are examined in order to assess the suitability of the current gust criteria for the NWS wind advisory and high wind warning. Nearly 92% (45%) of the nonconvective wind events considered from Storm Data were accompanied by peak gusts beneath the high wind warning (wind advisory) threshold of 58 mi h−1 (25.9 m s−1) [46 mi h−1 (20.6 m s−1)], and greater than 74% (28%) of all fatal and injury-causing events were associated with peak gusts below these same product gust criteria. NWS wind products were disproportionately issued in areas of complex terrain where wind climatologies include a greater frequency of high wind warning threshold-level gusts, irrespective of observed impacts. For many areas of the eastern United States, a 58 mi h−1 (25.9 m s−1) gust of convective, tropical, or nonconvective origin falls within the top 0.5% of all observed daily maximum wind gusts, nearly eliminating the possibility of a nonconvective gust meeting the issuance criterion.

Corresponding author address: Paul Miller, Dept. of Geography, The University of Georgia, Rm. 204, 210 Field St., Athens, GA 30602. E-mail: paul.miller@uga.edu

Abstract

Nonconvective high winds are a deceptively hazardous meteorological phenomenon. Though the National Weather Service (NWS) possesses an array of products designed to alert the public to nonconvective wind potential, documentation justifying the choice of issuance thresholds is scarce. Measured wind speeds from the Global Historical Climatology Network (GHCN)-Daily dataset associated with human-reported nonconvective wind events from Storm Data are examined in order to assess the suitability of the current gust criteria for the NWS wind advisory and high wind warning. Nearly 92% (45%) of the nonconvective wind events considered from Storm Data were accompanied by peak gusts beneath the high wind warning (wind advisory) threshold of 58 mi h−1 (25.9 m s−1) [46 mi h−1 (20.6 m s−1)], and greater than 74% (28%) of all fatal and injury-causing events were associated with peak gusts below these same product gust criteria. NWS wind products were disproportionately issued in areas of complex terrain where wind climatologies include a greater frequency of high wind warning threshold-level gusts, irrespective of observed impacts. For many areas of the eastern United States, a 58 mi h−1 (25.9 m s−1) gust of convective, tropical, or nonconvective origin falls within the top 0.5% of all observed daily maximum wind gusts, nearly eliminating the possibility of a nonconvective gust meeting the issuance criterion.

Corresponding author address: Paul Miller, Dept. of Geography, The University of Georgia, Rm. 204, 210 Field St., Athens, GA 30602. E-mail: paul.miller@uga.edu
Save