• Benjamin, S. G., and Coauthors, 2014: The 2014 HRRR and Rapid Refresh: Hourly updated NWP guidance from NOAA for aviation, improvements for 2013–2016. Proc. Fourth Aviation, Range, and Aerospace Meteorology Special Symp. on Weather–Air Traffic Management Integration, Atlanta, GA, Amer. Meteor. Soc., 2.4. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper240012.html.]

  • Breiman, L., 1996: Technical note: Some properties of splitting criteria. Mach. Learn., 24, 4147, doi:10.1023/A:1018094028462.

  • Breiman, L., 2001: Random forests. Mach. Learn., 45, 532, doi:10.1023/A:1010933404324.

  • Breiman, L., Friedman J. , Olshen R. A. , and Stone C. J. , 1984: Classification and Regression Trees. CRC Press, 358 pp.

  • Carbone, R. E., and Tuttle J. D. , 2008: Rainfall occurrence in the U.S. warm season: The diurnal cycle. J. Climate, 21, 41324146, doi:10.1175/2008JCLI2275.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., and Chen T. C. , 2007: Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135, 34563473, doi:10.1175/MWR3467.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Bullock R. G. , Jensen T. L. , Xue M. , and Kong F. , 2014: Application of object-based time-domain diagnostics for tracking precipitation systems in convection allowing models. Wea. Forecasting, 29, 517542, doi:10.1175/WAF-D-13-00098.1.

    • Search Google Scholar
    • Export Citation
  • Colavito, J. A., McGettigan S. , Robinson M. , Mahoney J. L. , and Phaneuf M. , 2011: Enhancements in convective weather forecasting for NAS traffic flow management (TFM). Preprints, 15th Conf. on Aviation, Range, and Aerospace Meteorology, Los Angeles, CA, Amer. Meteor. Soc., 13.6. [Available online at https://ams.confex.com/ams/14Meso15ARAM/techprogram/paper_191100.htm.]

  • Colavito, J. A., McGettigan S. , Iskenderian H. , and Lack S. A. , 2012: Enhancements in convective weather forecasting for NAS traffic flow management: Results of the 2010 and 2011 evaluations of CoSPA and discussion of FAA plans. Proc. Third Aviation, Range, and Aerospace Meteorology Special Symp. on Weather–Air Traffic Management Integration, New Orleans, LA, Amer. Meteor. Soc. [Available online at https://ams.confex.com/ams/92Annual/webprogram/Paper202520.html.]

  • Coniglio, M. C., Brooks H. E. , Weiss S. J. , and Corfidi S. F. , 2007: Forecasting the maintenance of quasi-linear mesoscale convective systems. Wea. Forecasting, 22, 556570, doi:10.1175/WAF1006.1.

    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., Hwang J. Y. , and Stensrud D. J. , 2010: Environmental factors in the upscale growths and longevity of MCSs derived from Rapid Update Cycle analyses. Mon. Wea. Rev., 138, 35143539, doi:10.1175/2010MWR3233.1.

    • Search Google Scholar
    • Export Citation
  • Dattatreya, G. R., 2009: Decision trees. Artificial Intelligence Methods in the Environmental Sciences, S. E. Haupt, C. Marzban, and A. Pasini, Eds., Springer, 77–101.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A., Brown B. G. , and Bullock R. G. , 2006: Object-based verification of precipitation forecasts. Part II: Application to convective rain systems. Mon. Wea. Rev., 134, 17851795, doi:10.1175/MWR3146.1.

    • Search Google Scholar
    • Export Citation
  • De’ath, G., and Fabricius K. E. , 2000: Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology, 81, 31783192, doi:10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Delle Monache, L., Eckel F. A. , Rife D. L. , Nagarajan B. , and Searight K. , 2013: Probabilistic weather prediction with an analog ensemble. Mon. Wea. Rev., 141, 34983516, doi:10.1175/MWR-D-12-00281.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and Kaplan J. , 1994: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, doi:10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Díaz-Uriarte, R., and de Andrés S. A. , 2006: Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7, 3, doi:10.1186/1471-2105-7-3.

    • Search Google Scholar
    • Export Citation
  • Dupree, W., and Coauthors, 2009: The advanced storm prediction for aviation forecast demonstration. WMO Symp. on Nowcasting, Whistler, BC, Canada, WMO. [Available online at https://www.ll.mit.edu/mission/aviation/publications/publication-files/ms-papers/Dupree_2009_WSN_MS-38403_WW-16540.pdf.]

  • Evans, J. E., and Ducot E. R. , 2006: Corridor Integrated Weather System. MIT Lincoln Lab. J., 16, 5980.

  • Gagne, D. J., McGovern A. , and Brotzge J. , 2009: Classification of convective areas using decision trees. J. Atmos. Oceanic Technol., 26, 13411353, doi:10.1175/2008JTECHA1205.1.

    • Search Google Scholar
    • Export Citation
  • Gagne, D. J., McGovern A. , and Xue M. , 2014: Machine learning enhancement of storm-scale ensemble probabilistic quantitative precipitation forecasts. Wea. Forecasting, 29, 10241043, doi:10.1175/WAF-D-13-00108.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., 1998: Mesoscale convective systems in the southeast United States during 1994–95: A survey. Wea. Forecasting, 13, 860869, doi:10.1175/1520-0434(1998)013<0860:MCSITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Glahn, H. R., and Lowry D. A. , 1972: The use of model output statistics (MOS) in objective weather forecasting. J. Appl. Meteor., 11, 12031211, doi:10.1175/1520-0450(1972)011<1203:TUOMOS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hall, T. J., Mutchler C. N. , Bloy G. J. , Thessin R. N. , Gaffney S. K. , and Lareau J. J. , 2011: Performance of observation-based prediction algorithms for very short-range, probabilistic clear-sky condition forecasting. J. Appl. Meteor. Climatol., 50, 319, doi:10.1175/2010JAMC2529.1.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., and Whitaker J. S. , 2006: Probabilistic quantitative precipitation forecasts based on reforecast analogs: Theory and application. Mon. Wea. Rev., 134, 32093229, doi:10.1175/MWR3237.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., O’Connor E. J. , and Illingworth A. J. , 2009: Verification of cloud fraction forecasts. Quart. J. Roy. Meteor. Soc., 135, 14941511, doi:10.1002/qj.481.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:10.1029/2004RG000150.

  • Jirak, I. L., and Cotton W. R. , 2007: Observational analysis of the predictability of mesoscale convective systems. Wea. Forecasting, 22, 813838, doi:10.1175/WAF1012.1.

    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V., Elmore K. L. , and Richman M. B. , 2010: Reaching scientific consensus through a competition. Bull. Amer. Meteor. Soc., 91, 14231427, doi:10.1175/2010BAMS2870.1.

    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., and Coauthors, 2012: A wind power forecasting system to optimize grid integration. IEEE Trans. Sustainable Energy, 3, 670682, doi:10.1109/TSTE.2012.2201758.

    • Search Google Scholar
    • Export Citation
  • Marzban, C., 2004: The ROC curve and the area under it as performance measures. Wea. Forecasting, 19, 11061114, doi:10.1175/825.1.

  • Marzban, C., Leyton S. , and Colman B. , 2007: Ceiling and visibility forecasts via neural networks. Wea. Forecasting, 22, 466479, doi:10.1175/WAF994.1.

    • Search Google Scholar
    • Export Citation
  • McGovern, A., Gagne D. J. II, Troutman N. , Brown R. A. , Basara J. , and Williams J. K. , 2011: Using spatiotemporal relational random forests to improve our understanding of severe weather processes. Stat. Anal. Data Mining, 4, 407429, doi:10.1002/sam.10128.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and Bedka K. M. , 2006: Forecasting convective initiation by monitoring the evolution of moving convection in daytime GOES imagery. Mon. Wea. Rev., 134, 4978, doi:10.1175/MWR3062.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., Bedka K. M. , Paech S. J. , and Litten L. A. , 2008: A statistical evaluation of GOES cloud-top properties for predicting convective initiation. Mon. Wea. Rev., 136, 48994914, doi:10.1175/2008MWR2352.1.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., Williams J. , Jewett C. , Ahijevych D. , LeRoy A. , and Walker J. , 2015: Probabilistic 0–1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data. J. Appl. Meteor. Climatol., 54, 10391059, doi:10.1175/JAMC-D-14-0129.1.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., Grim J. A. , and Steiner M. , 2015: Assessment of the High-Resolution Rapid Refresh Model’s ability to predict large convective storms using object-based verification. Wea. Forecasting, 30, 892913, doi:10.1175/WAF-D-14-00118.1.

    • Search Google Scholar
    • Export Citation
  • Robinson, M., 2014: Significant weather impacts on the national airspace system: A “weather-ready” view of air traffic management needs, challenges, opportunities, and lessons learned. Proc. Second Symp. on Building a Weather-Ready Nation: Enhancing Our Nation’s Readiness, Responsiveness, and Resilience to High Impact Weather Events, Atlanta, GA, Amer. Meteor. Soc., 6.3. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper241280.html.]

  • Roebber, P. J., 2015: Adaptive evolutionary programming. Mon. Wea. Rev., 143, 14971505, doi:10.1175/MWR-D-14-00095.1.

  • Rozoff, C. M., and Kossin J. P. , 2011: New probabilistic forecast schemes for the prediction of tropical cyclone rapid intensification. Wea. Forecasting, 26, 677689, doi:10.1175/WAF-D-10-05059.1.

    • Search Google Scholar
    • Export Citation
  • Smalley, D. J., and Bennett B. J. , 2002: Using ORPG to enhance NEXRAD products to support FAA critical systems. Preprints, 10th Conf. on Aviation, Range, and Aerospace Meteorology, Portland, OR, Amer. Meteor. Soc., 3.6. [Available online at https://ams.confex.com/ams/pdfpapers/38861.pdf.]

  • Stensrud, D. J., and Coauthors, 2013: Progress and challenges with warn-on-forecast. Atmos. Environ., 123, 216, doi:10.1016/j.atmosres.2012.04.004.

    • Search Google Scholar
    • Export Citation
  • Topić, G., and Coauthors, 2014: Parallel random forest algorithm usage. Google Code Archive, accessed 26 June 2014. [Available online at http://code.google.com/p/parf/wiki/Usage.]

  • Trier, S. B., Davis C. A. , Ahijevych D. A. , and Manning K. W. , 2014: Use of the parcel buoyancy minimum (Bmin) to diagnose simulated thermodynamic destabilization. Part I: Methodology and case studies of MCS initiation. Mon. Wea. Rev., 142, 945966, doi:10.1175/MWR-D-13-00272.1.

    • Search Google Scholar
    • Export Citation
  • Trier, S. B., Romine G. S. , Ahijevych D. A. , Trapp R. J. , Schumacher R. S. , Coniglio M. C. , and Stensrud D. J. , 2015: Mesoscale thermodynamic influences on convection initiation near a surface dryline in a convection-permitting ensemble. Mon. Wea. Rev., 143, 37263753, doi:10.1175/MWR-D-15-0133.1.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2d ed. International Geophysics Series, Vol. 91, Academic Press, 627 pp.

    • Search Google Scholar
    • Export Citation
  • Williams, J. K., 2014: Using random forests to diagnose aviation turbulence. Mach. Learn., 95, 5170, doi:10.1007/s10994-013-5346-7.

  • Williams, J. K., Craig J. , Cotter A. , and Wolff J. K. , 2007: A hybrid machine learning and fuzzy logic approach to CIT diagnostic development. Preprints, Fifth Conf. on Artificial Intelligence Applications to Environmental Science, San Antonio, TX, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/87ANNUAL/webprogram/Paper120119.html.]

  • Williams, J. K., Ahijevych D. , Dettling S. , and Steiner M. , 2008a: Combining observations and model data for short-term storm forecasting. Remote Sensing Applications for Aviation Weather Hazard Detection and Decision Support, W. Feltz and J. Murray, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7088), 708805, doi:10.1117/12.795737.

    • Search Google Scholar
    • Export Citation
  • Williams, J. K., Ahijevych D. , Kessinger C. J. , Saxen T. R. , Steiner M. , and Dettling S. , 2008b: A machine learning approach to finding weather regimes and skillful predictor combinations for short-term storm forecasting. Preprints, Sixth Conf. on Artificial Intelligence Applications to Environmental Science/13th Conf. on Aviation, Range, and Aerospace Meteorology, New Orleans, LA, Amer. Meteor. Soc., J1.4. [Available online at https://ams.confex.com/ams/pdfpapers/135663.pdf.]

  • Williams, J. K., Sharman R. , Craig J. , and Blackburn G. , 2008c: Remote detection and diagnosis of thunderstorm turbulence. Remote Sensing Applications for Aviation Weather Hazard Detection and Decision Support, W. Feltz and J. Murray, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7088), 708804, doi:10.1117/12.795570.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 535 277 28
PDF Downloads 526 339 28

Probabilistic Forecasts of Mesoscale Convective System Initiation Using the Random Forest Data Mining Technique

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • | 2 The Weather Company, Andover, Massachusetts
  • | 3 National Center for Atmospheric Research,* Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

A data mining and statistical learning method known as a random forest (RF) is employed to generate 2-h forecasts of the likelihood for initiation of mesoscale convective systems (MCS-I). The RF technique uses an ensemble of decision trees to relate a set of predictors [in this case radar reflectivity, satellite imagery, and numerical weather prediction (NWP) model diagnostics] to a predictand (in this case MCS-I). The RF showed a remarkable ability to detect MCS-I events. Over 99% of the 550 observed MCS-I events were detected to within 50 km. However, this high detection rate came with a tendency to issue false alarms either because of premature warning of an MCS-I event or in the continued elevation of RF forecast likelihoods well after an MCS-I event occurred. The skill of the RF forecasts was found to increase with the number of trees and the fraction of positive events used in the training set. The skill of the RF was also highly dependent on the types of predictor fields included in the training set and was notably better when a more recent training period was used. The RF offers advantages over high-resolution NWP because it can be run in a fraction of the time and can account for nonlinearly varying biases in the model data. In addition, as part of the training process, the RF ranks the importance of each predictor, which can be used to assess the utility of new datasets in the prediction of MCS-I.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: David Ahijevych, Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: ahijevyc@ucar.edu

Abstract

A data mining and statistical learning method known as a random forest (RF) is employed to generate 2-h forecasts of the likelihood for initiation of mesoscale convective systems (MCS-I). The RF technique uses an ensemble of decision trees to relate a set of predictors [in this case radar reflectivity, satellite imagery, and numerical weather prediction (NWP) model diagnostics] to a predictand (in this case MCS-I). The RF showed a remarkable ability to detect MCS-I events. Over 99% of the 550 observed MCS-I events were detected to within 50 km. However, this high detection rate came with a tendency to issue false alarms either because of premature warning of an MCS-I event or in the continued elevation of RF forecast likelihoods well after an MCS-I event occurred. The skill of the RF forecasts was found to increase with the number of trees and the fraction of positive events used in the training set. The skill of the RF was also highly dependent on the types of predictor fields included in the training set and was notably better when a more recent training period was used. The RF offers advantages over high-resolution NWP because it can be run in a fraction of the time and can account for nonlinearly varying biases in the model data. In addition, as part of the training process, the RF ranks the importance of each predictor, which can be used to assess the utility of new datasets in the prediction of MCS-I.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: David Ahijevych, Mesoscale and Microscale Meteorology Laboratory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000. E-mail: ahijevyc@ucar.edu
Save