• Alliksaar, M., 2007: Heavy rain event for north-of-Superior – Oct 23, 2004. COMET, UCAR Community Programs, Boulder, CO. [Available online at http://www.meted.ucar.edu/norlat/cases/detail.php?case_number=55&author01=Alliksaar,%20Mark%20&author02=.]

  • Applequist, S., Gahrs G. E. , Pfeffer R. L. , and Niu X.-F. , 2002: Comparison of methodologies for probabilistic quantitative precipitation forecasting. Wea. Forecasting, 17, 783799, doi:10.1175/1520-0434(2002)017<0783:COMFPQ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Becker, E. J., and Berbery E. H. , 2009: Understanding the characteristics of daily precipitation over the United States using the North American Regional Reanalysis. J. Climate, 22, 62686286, doi:10.1175/2009JCLI2838.1.

    • Search Google Scholar
    • Export Citation
  • Bélair, S., Mailhot J. , Girard C. , and Vaillancourt P. , 2005: Boundary layer and shallow cumulus clouds in a medium-range forecast of a large-scale weather system. Mon. Wea. Rev., 133, 19381960, doi:10.1175/MWR2958.1.

    • Search Google Scholar
    • Export Citation
  • Bennett, L. J., Browning K. A. , Blyth A. M. , Parker D. J. , and Clark P. A. , 2006: A review of the initiation of precipitating convection in the United Kingdom. Quart. J. Roy. Meteor. Soc., 132, 10011020, doi:10.1256/qj.05.54.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, doi:10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 1986: Conceptual models of precipitation systems. Wea. Forecasting, 1, 2341, doi:10.1175/1520-0434(1986)001<0023:CMOPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and Coauthors, 2007: The Convective Storm Initiation Project. Bull. Amer. Meteor. Soc., 88, 19391955, doi:10.1175/BAMS-88-12-1939.

    • Search Google Scholar
    • Export Citation
  • Buizza, R., Houtekamer P. L. , Pellerin G. , Toth Z. , Zhu Y. , and Wei M. , 2005: A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev., 133, 10761097, doi:10.1175/MWR2905.1.

    • Search Google Scholar
    • Export Citation
  • Bukovsky, M. S., and Karoly D. J. , 2007: A brief evaluation of precipitation from the North American Regional Reanalysis. J. Hydrometeor., 8, 837846, doi:10.1175/JHM595.1.

    • Search Google Scholar
    • Export Citation
  • Canadian National Radar Network, 2014: Data analysis and archive division. Environment Canada, accessed 4 February 2016. [Available online at http://nadm.ontario.int.ec.gc.ca/Intranet/climate/radar_extractor/login.cfm.]

  • Cao, Z., 2008: Severe hail frequency over Ontario, Canada: Recent trend and variability. Geophys. Res. Lett., 35, L14803, doi:10.1029/2008GL034888.

    • Search Google Scholar
    • Export Citation
  • Cao, Z., and Ma J. , 2005: An application of the variational method to computation of sensible heat flux over a deciduous forest. J. Appl. Meteor., 44, 144152, doi:10.1175/JAM-2179.1.

    • Search Google Scholar
    • Export Citation
  • Cao, Z., and Ma J. , 2009a: A variational method for computation of sensible heat flux over the Arctic sea ice. J. Atmos. Oceanic Technol., 26, 838845, doi:10.1175/2008JTECHA1214.1.

    • Search Google Scholar
    • Export Citation
  • Cao, Z., and Ma J. , 2009b: Summer severe rainfall frequency trend and variability over Ontario, Canada. J. Appl. Meteor. Climatol., 48, 19551960, doi:10.1175/2009JAMC2055.1.

    • Search Google Scholar
    • Export Citation
  • Cao, Z., Pellerin P. , and Ritchie H. , 2004: Verification of mesoscale modeling for the severe rainfall event over southern Ontario in May 2000. Geophys. Res. Lett., 31, L23108, doi:10.1029/2004GL020547.

    • Search Google Scholar
    • Export Citation
  • Cao, Z., Ma J. , and Rouse W. R. , 2006: Improving computation of sensible heat flux over a water surface using the variational method. J. Hydrometeor., 7, 678686, doi:10.1175/JHM513.1.

    • Search Google Scholar
    • Export Citation
  • Carrera, M. L., Gyakum J. R. , and Lin C. A. , 2009: Observational study of wind channeling within the St. Lawrence River valley. J. Appl. Meteor. Climatol., 48, 23412361, doi:10.1175/2009JAMC2061.1.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18, 9971017, doi:10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., Meritt J. H. , and Fritsch J. M. , 1996: Predicting the movement of mesoscale convective complexes. Wea. Forecasting, 11, 4146, doi:10.1175/1520-0434(1996)011<0041:PTMOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Côté, J., Gravel S. , Méthot A. , Patoine A. , Roch M. , and Staniforth A. , 1998: The operational CMC/MRB Global Environmental Multiscale (GEM) model. Part I: Design considerations and formulation. Mon. Wea. Rev., 126, 13731395, doi:10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Demeritt, D., Nobert S. , Cloke H. , and Pappenberger F. , 2010: Challenges in communicating and using ensembles in operational flood forecasting. Meteor. Appl., 17, 209222, doi:10.1002/met.194.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, Brooks H. E. , and Maddox R. A. , 1996: Flash flood forecasting: An ingredients-based methodology. Wea. Forecasting, 11, 560581, doi:10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Heideman K. F. , 1989: Some characteristics of the limited-area fine-mesh (LFM) model quantitative precipitation forecasts (QPF) during the 1982 and 1983 warm seasons. Wea. Forecasting, 4, 173185, doi:10.1175/1520-0434(1989)004<0173:SCOTLA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Carbone R. E. , 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955965, doi:10.1175/BAMS-85-7-955.

    • Search Google Scholar
    • Export Citation
  • Gallus, W. A., Jr., Snook N. A. , and Johnson E. V. , 2008: Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Wea. Forecasting, 23, 101113, doi:10.1175/2007WAF2006120.1.

    • Search Google Scholar
    • Export Citation
  • Germann, U., and Zawadzki I. , 2002: Scale-dependence of the predictability of precipitation from continental radar images. Part I: Description of the methodology. Mon. Wea. Rev., 130, 28592873, doi:10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gordon, J. D., and Albert D. , 2012: A comprehensive severe weather forecast checklist and reference guide. National Weather Service, 46 pp. [Available online at http://www.weather.gov/media/sgf/research/severe_weather_checklist.pdf.]

  • Gravelle, C. M., Graves C. E. , Gagan J. P. , Glass F. H. , and Evans M. , 2009: Winter weather guidance from regional historical analogs. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., JP3.10. [Available online at https://ams.confex.com/ams/pdfpapers/154201.pdf.]

  • Jessup, S. M., and Colucci S. J. , 2012: Organization of flash-flood-producing precipitation in the northeast United States. Wea. Forecasting, 27, 345361, doi:10.1175/WAF-D-11-00026.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, G. A., and Moser J. , 1992: A decision tree for forecasting heavy rain from mid-latitude synoptic patterns in Louisiana generally from late fall through spring. Post-preprints, National Heavy Precipitation Workshop, Pittsburgh, PA, NOAA Tech. Memo. NWS ER-87, 189–194. [Available online at http://docs.lib.noaa.gov/noaa_documents/NWS/NWS_ER/TM_NWS_ER_87.pdf.]

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol, 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1990: A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci., 47, 27842802, doi:10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme. The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr., No. 46, Amer. Meteor. Soc., 165–170.

  • Kain, J. S., Baldwin M. E. , and Weiss S. J. , 2003: Parameterized updraft mass flux as a predictor of convective intensity. Wea. Forecasting, 18, 106116, doi:10.1175/1520-0434(2003)018<0106:PUMFAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M., Evans J. S. , and Guyer J. L. , 2006: The relationship of the Great Plains low level jet to nocturnal MCS development. Preprints, 23rd Conf. on Severe Local Storms, St. Louis, MO, Amer. Meteor. Soc., P1.11. [Available online at https://ams.confex.com/ams/pdfpapers/115338.pdf.]

  • Langlois, A., and Coauthors, 2009: Simulation of snow water equivalent (SWE) using thermodynamic snow models in Quebec, Canada. J. Hydrometeor., 10, 14471463, doi:10.1175/2009JHM1154.1.

    • Search Google Scholar
    • Export Citation
  • Lavers, D. A., and Villarini G. , 2013: Were global numerical weather prediction systems capable of forecasting the extreme Colorado rainfall of 9–16 September 2013? Geophys. Res. Lett., 40, 64056410, doi:10.1002/2013GL058282.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and Fox-Rabinovitz M. , 1989: Consistent vertical and horizontal resolution. Mon. Wea. Rev., 117, 25752583, doi:10.1175/1520-0493(1989)117<2575:CVAHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lombardo, K. A., and Colle B. A. , 2010: The spatial and temporal distribution of organized convective structures over the northeast and their ambient conditions. Mon. Wea. Rev., 138, 44564474, doi:10.1175/2010MWR3463.1.

    • Search Google Scholar
    • Export Citation
  • Lopez, P., 2007: Cloud and precipitation parameterization in modeling and variational data assimilation: A review. J. Atmos. Sci., 64, 37663784, doi:10.1175/2006JAS2030.1.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., Gong Y. , and Zhang D.-L. , 2014: Initiation and organizational modes in an extreme-rain-producing convective system along a mei-yu front in east China. Mon. Wea. Rev., 142, 203221, doi:10.1175/MWR-D-13-00111.1.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., Chappell C. F. , and Hoxit L. R. , 1979: Synoptic and meso-α scale aspects of flash flood events. Bull. Amer. Meteor. Soc., 60, 115123, doi:10.1175/1520-0477-60.2.115.

    • Search Google Scholar
    • Export Citation
  • Mailhot, J., and Coauthors, 1998: Scientific description of RPN physics library – Version 3.6. Recherche en prévision numérique, 188 pp. [Available from RPN, 2121 Trans-Canada, Dorval, QC H9P 1J3, Canada; also online at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.7227&rep=rep1&type=pdf.]

  • Mailhot, J., and Coauthors, 2006: The 15-km version of the Canadian regional forecast system. Atmos.–Ocean, 44, 133149, doi:10.3137/ao.440202.

    • Search Google Scholar
    • Export Citation
  • Mainville, S., 2004: Heavy convective rain events over Quebec: A forecasting tool. Preprints, 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P8.7. [Available online at https://ams.confex.com/ams/pdfpapers/80902.pdf.]

  • Marsham, J. H., Trier S. B. , Weckwerth T. M. , and Wilson J. W. , 2011: Observations of elevated convection initiation leading to a surface-based squall line during 13 June IHOP_2002. Mon. Wea. Rev., 139, 247271, doi:10.1175/2010MWR3422.1.

    • Search Google Scholar
    • Export Citation
  • McTaggart-Cowan, R., and Zadra A. , 2015: Representing Richardson number hysteresis in the NWP boundary layer. Mon. Wea. Rev., 143, 12321258, doi:10.1175/MWR-D-14-00179.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., Gyakum J. R. , Atallah E. H. , and Smith J. F. , 2011: A diagnostic examination of the eastern Ontario and western Quebec wintertime convection event of 28 January 2010. Wea. Forecasting, 26, 301318, doi:10.1175/2010WAF2222432.1.

    • Search Google Scholar
    • Export Citation
  • Milrad, S. M., Atallah E. H. , Gyakum J. R. , and Dookhie G. , 2014: Synoptic typing and precursors of heavy warm-season precipitation events at Montreal, Quebec. Wea. Forecasting, 29, 419444, doi:10.1175/WAF-D-13-00030.1.

    • Search Google Scholar
    • Export Citation
  • Olson, D. A., Junker N. W. , and Korty B. , 1995: Evaluation of 33 years of quantitative precipitation forecasting at the NMC. Wea. Forecasting, 10, 498511, doi:10.1175/1520-0434(1995)010<0498:EOYOQP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ontario Climate Center, 2005: Data analysis and archive division. Environment Canada, accessed 4 February 2016. [Available online at http://nadm.ontario.int.ec.gc.ca/Intranet/notices_e.cfm.]

  • Schumacher, R. S., and Johnson R. H. , 2005: Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Mon. Wea. Rev., 133, 961976, doi:10.1175/MWR2899.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and Johnson R. H. , 2006: Characteristics of U.S. extreme rain events during 1999–2003. Wea. Forecasting, 21, 6985, doi:10.1175/WAF900.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and Johnson R. H. , 2008: Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash flood. Mon. Wea. Rev., 136, 39643986, doi:10.1175/2008MWR2471.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, R. S., and Johnson R. H. , 2009: Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Wea. Forecasting, 24, 555574, doi:10.1175/2008WAF2222173.1.

    • Search Google Scholar
    • Export Citation
  • Sukovich, E. M., Ralph F. M. , Barthold F. E. , Reynolds D. W. , and Novak D. R. , 2014: Extreme quantitative precipitation forecast performance at the Weather Prediction Center from 2001 to 2011. Wea. Forecasting, 29, 894911, doi:10.1175/WAF-D-13-00061.1.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., 1978: A parameterization scheme for non-convective condensation including prediction of cloud water content. Quart. J. Roy. Meteor. Soc., 104, 677690, doi:10.1002/qj.49710444110.

    • Search Google Scholar
    • Export Citation
  • Sundqvist, H., Berge E. , and Kristjánsson J. E. , 1989: Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon. Wea. Rev., 117, 16411657, doi:10.1175/1520-0493(1989)117<1641:CACPSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • University of Wyoming, 2014: Upper-air data. Department of Atmospheric Science, accessed 4 February 2016. [Available online at http://weather.uwyo.edu/upperair/sounding.html.]

  • Weckwerth, T. M., and Parsons D. B. , 2006: A review of convection initiation and motivation for IHOP_2002. Mon. Wea. Rev., 134, 522, doi:10.1175/MWR3067.1.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., Bian X. , and Zhong S. , 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, doi:10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Whittier, S. L., Hanson G. A. , and Bell R. E. , 2004: A conceptual model of warm season excessive rainfall used to warn for flooding of 12 June 2002 across northern Vermont. Preprints, 11th Conf. on Mountain Meteorology and the Annual Mesoscale Alpine Program (MAP), Bartlett, NH, Amer. Meteor. Soc., P9.1. [Available online at https://ams.confex.com/ams/pdfpapers/76866.pdf.]

  • Wulfmeyer, V., and Coauthors, 2008: The convective and orographically induced precipitation study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Amer. Meteor. Soc., 89, 14771486, doi:10.1175/2008BAMS2367.1.

    • Search Google Scholar
    • Export Citation
  • Xu, Q., and Qiu C. J. , 1997: A variational method for computing surface heat fluxes from ARM surface energy and radiation balance systems. J. Appl. Meteor., 36, 311, doi:10.1175/1520-0450(1997)036<0003:AVMFCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Hsie E.-Y. , and Moncrieff M. W. , 1988: A comparison of explicit and implicit predictions of convective and stratiform precipitating weather systems with a meso-β-scale numerical model. Quart. J. Roy. Meteor. Soc., 114, 3160, doi:10.1002/qj.49711447903.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Kain J. S. , Fritsch J. M. , and Gao K. , 1994: Comments on “Parameterization of convective precipitation in mesoscale numerical models: A critical review.” Mon. Wea. Rev., 122, 22222231, doi:10.1175/1520-0493(1994)122<2222:COOCPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Zhang S. , and Weaver S. , 2006: Low-level jets over the mid-Atlantic states: Warm-season climatology and a case study. J. Appl. Meteor. Climatol., 45, 194209, doi:10.1175/JAM2313.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Lin Y. , Zhao P. , Yu X. , Wang S. , Kang H. , and Ding Y. , 2013: The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons. Geophys. Res. Lett., 40, 14261431, doi:10.1002/grl.50304.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., Zhu L. , Zhang X. , and Tallapragada V. , 2015: Sensitivity of idealized hurricane intensity and structures under varying background flows and initial vortex intensities to different vertical resolutions in HWRF. Mon. Wea. Rev., 143, 914932, doi:10.1175/MWR-D-14-00102.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and Zhang D.-L. , 2012: Subkilometer simulation of a torrential-rain-producing mesoscale convective system in east China. Part I: Model verification and convective organization. Mon. Wea. Rev., 140, 184201, doi:10.1175/MWR-D-11-00029.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 132 73 6
PDF Downloads 85 63 2

Analysis of Missed Summer Severe Rainfall Forecasts

View More View Less
  • 1 Environment and Climate Change Canada, Toronto, Ontario, Canada
  • | 2 Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Despite considerable progress in mesoscale numerical weather prediction (NWP), the ability to predict summer severe rainfall (SSR) in terms of amount, location, and timing remains very limited because of its association with convective or mesoscale phenomena. In this study, two representative missed SSR events that occurred in the highly populated Great Lakes regions are analyzed within the context of moisture availability, convective instability, and lifting mechanism in order to help identify the possible causes of these events and improve SSR forecasts/nowcasts. Results reveal the following limitations of the Canadian regional NWP model in predicting SSR events: 1) the model-predicted rainfall is phase shifted to an undesired location that is likely caused by the model initial condition errors, and 2) the model is unable to resolve the echo-training process because of the weakness of the parameterized convection and/or coarse resolutions. These limitations are related to the ensuing model-predicted features: 1) vertical motion in the areas of SSR occurrence is unfavorable for triggering parameterized convection and grid-scale condensation; 2) convective available potential energy is lacking for initial model spinup and later for elevating latent heating to higher levels through parameterized convection, giving rise to less precipitation; and 3) the conversion of water vapor into cloud water at the upper and middle levels is underpredicted. Recommendations for future improvements are discussed.

Corresponding author address: Dr. Zuohao Cao, Meteorological Research Division, Environment and Climate Change Canada, 4905 Dufferin St., Toronto ON M3H 5T4, Canada. E-mail: zuohao.cao@canada.ca

Abstract

Despite considerable progress in mesoscale numerical weather prediction (NWP), the ability to predict summer severe rainfall (SSR) in terms of amount, location, and timing remains very limited because of its association with convective or mesoscale phenomena. In this study, two representative missed SSR events that occurred in the highly populated Great Lakes regions are analyzed within the context of moisture availability, convective instability, and lifting mechanism in order to help identify the possible causes of these events and improve SSR forecasts/nowcasts. Results reveal the following limitations of the Canadian regional NWP model in predicting SSR events: 1) the model-predicted rainfall is phase shifted to an undesired location that is likely caused by the model initial condition errors, and 2) the model is unable to resolve the echo-training process because of the weakness of the parameterized convection and/or coarse resolutions. These limitations are related to the ensuing model-predicted features: 1) vertical motion in the areas of SSR occurrence is unfavorable for triggering parameterized convection and grid-scale condensation; 2) convective available potential energy is lacking for initial model spinup and later for elevating latent heating to higher levels through parameterized convection, giving rise to less precipitation; and 3) the conversion of water vapor into cloud water at the upper and middle levels is underpredicted. Recommendations for future improvements are discussed.

Corresponding author address: Dr. Zuohao Cao, Meteorological Research Division, Environment and Climate Change Canada, 4905 Dufferin St., Toronto ON M3H 5T4, Canada. E-mail: zuohao.cao@canada.ca
Save