• Bedka, K. M., Brunner J. , Dworak R. , Feltz W. , Otkin J. , and Greenwald T. , 2010: Objective satellite-based overshooting top detection using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181202, doi:10.1175/2009JAMC2286.1.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., Wang C. , Rogers R. , Carey L. D. , Feltz W. , and Kanak J. , 2015: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 super rapid scan datasets. Wea. Forecasting, 30, 571590, doi:10.1175/WAF-D-14-00062.1.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L., Pavolonis M. J. , Sieglaff J. M. , and Lindsey D. T. , 2014: An empirical model for assessing the severe weather potential of developing convection. Wea. Forecasting, 29, 639653, doi:10.1175/WAF-D-13-00113.1.

    • Search Google Scholar
    • Export Citation
  • Daniel, A. E., Chrisman J. N. , Ray C. A. , Smith S. D. , and Miller M. W. , 2014: New WSR-88D operational techniques: Responding to recent weather events. Proc. 30th Conf. on Environmental Information Processing Technologies, Atlanta, GA, Amer. Meteor. Soc., 5.2. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper241216.html.]

  • Dworak, R., Bedka K. , Brunner J. , and Feltz W. , 2012: Comparison between GOES-12 overshooting-top detections, WSR-88D radar reflectivity, and severe storm reports. Wea. Forecasting, 27, 684699, doi:10.1175/WAF-D-11-00070.1.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2012: The GOES-R Proving Ground: Accelerating user readiness for the next-generation geostationary environmental satellite system. Bull. Amer. Meteor. Soc., 93, 10291040, doi:10.1175/BAMS-D-11-00175.1.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors , 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, doi:10.1016/j.atmosres.2013.01.006.

    • Search Google Scholar
    • Export Citation
  • Gravelle, C. M., Mecikalski J. R. , Line W. E. , Bedka K. M. , Petersen R. A. , Sieglaff J. M. , Stano G. T. , and Goodman S. J. , 2016: Demonstration of a GOES-R satellite convective toolkit to “bridge the gap” between severe weather watches and warnings: An example from the 20 May 2013 Moore, Oklahoma, tornado outbreak. Bull. Amer. Meteor. Soc., 97, 6984, doi:10.1175/BAMS-D-14-00054.1.

    • Search Google Scholar
    • Export Citation
  • Levizzani, V., and Setvák M. , 1996: Multispectral, high-resolution satellite observations of plumes on top of convective storms. J. Atmos. Sci., 53, 361369, doi:10.1175/1520-0469(1996)053<0361:MHRSOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Line, W. E., 2015a: 2013-2014 GOES-R Proving Ground activities at the Storm Prediction Center—Final evaluation. Storm Prediction Center Rep., 20 pp. [Available online at http://www.goes-r.gov/users/docs/pg-activities/SPC2014_GOESR_PG_Final_RPT_v6.pdf.]

  • Line, W. E., 2015b: GOES-R and JPSS Proving Ground demonstration at the Hazardous Weather Testbed 2015 Spring Experiment final evaluation. GOES-R Proving Ground, Greenbelt, MD, 43 pp. [Available online at http://www.goes-r.gov/users/docs/pg-activities/2015/HWT2015_SE_GOESR_PG_Final_RPT_F2.pdf.]

  • McCann, D. W., 1983: The enhanced-V: A satellite observable severe storm signature. Mon. Wea. Rev., 111, 887894, doi:10.1175/1520-0493(1983)111<0887:TEVASO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., Jewett C. P. , Apke J. M. , and Carey L. D. , 2016: Analysis of cumulus cloud updrafts as observed with 1-min resolution Super Rapid Scan GOES imagery. Mon. Wea. Rev., 144, 811830, doi:10.1175/MWR-D-14-00399.1.

    • Search Google Scholar
    • Export Citation
  • Rabin, R. M., Corfidi S. F. , Brunner J. C. , and Hane C. E. , 2004: Detecting winds aloft from water vapor satellite imagery in the vicinity of storms. Weather, 59, 251257, doi:10.1256/wea.182.03.

    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and Rutledge S. , 2003: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting, 18, 562584, doi:10.1175/1520-0434(2003)018<0562:NSIAGU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., Gunshor M. M. , Menzel W. P. , Li J. , Bachmeier S. , and Gurka J. J. , 2005: Introducing the next-generation Advanced Baseline Imager (ABI) on GOES-R. Bull. Amer. Meteor. Soc., 86, 10791096, doi:10.1175/BAMS-86-8-1079.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., and Coauthors, 2013: Geostationary Operational Environmental Satellite (GOES)-14 super rapid scan operations to prepare for GOES-R. J. Appl. Remote Sens., 7, 073462, doi:10.1117/1.JRS.7.073462.

    • Search Google Scholar
    • Export Citation
  • Schmit, T. J., and Coauthors, 2015: Rapid Refresh information of significant events: Preparing users for the next generation of geostationary operational satellites. Bull. Amer. Meteor. Soc., 96, 561576, doi:10.1175/BAMS-D-13-00210.1.

    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., Cronce L. M. , and Feltz W. F. , 2014: Improving satellite-based convective cloud growth monitoring with visible optical depth retrievals. J. Appl. Meteor. Climatol, 53, 506520, doi:10.1175/JAMC-D-13-0139.1.

    • Search Google Scholar
    • Export Citation
  • Walker, J. R., MacKenzie W. M. , Mecikalski J. R. , and Jewett C. P. , 2012: An enhanced geostationary satellite–based convective initiation algorithm for 0–2-h nowcasting with object tracking. J. Appl. Meteor. Climatol., 51, 19311949, doi:10.1175/JAMC-D-11-0246.1.

    • Search Google Scholar
    • Export Citation
  • Weldon, R. B., and Holmes S. J. , 1991: Water vapor imagery: Interpretation and applications to weather analysis and forecasting. NOAA Tech. Rep. NESDIS 57, 213 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 455 273 16
PDF Downloads 271 180 21

Use of Geostationary Super Rapid Scan Satellite Imagery by the Storm Prediction Center

View More View Less
  • 1 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma
  • | 2 NOAA/NESDIS/Center for Satellite Applications and Research/Advanced Satellite Products Branch, Madison, Wisconsin
  • | 3 NOAA/NESDIS/Center for Satellite Applications and Research/Regional and Mesoscale Meteorology Branch, Fort Collins, Colorado
  • | 4 NOAA/NESDIS/GOES-R Program Office, Greenbelt, Maryland
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Geostationary Operational Environmental Satellite-14 (GOES-14) Imager was operated by the National Oceanic and Atmospheric Administration (NOAA) in an experimental rapid scan 1-min mode during parts of 2012, 2013, 2014, and 2015. This scan mode, known as the Super Rapid Scan Operations for GOES-R (SRSOR), emulates the high-temporal-resolution sampling that will be provided by the Advanced Baseline Imager on the next-generation GOES-R series. NOAA/National Weather Service/Storm Prediction Center (SPC) forecasters utilized the 1-min imagery extensively in operations when available over convectively active regions. They found it provided them with unique insight into relevant features and processes before, during, and after convective initiation. This paper introduces how the SRSOR datasets from GOES-14 were used by SPC forecasters and how these data are likely to be applied when available operationally from GOES-R. Several animations, included as supplemental material, showcase the rapid change of severe weather–related phenomena observed during the 2014 and 2015 SRSOR campaigns from the GOES-14 Imager.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/10.1175/WAF-D-15-0135.s1.

Corresponding author address: William E. Line, NOAA/NWS/NCEP/Storm Prediction Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: bill.line@noaa.gov

Abstract

The Geostationary Operational Environmental Satellite-14 (GOES-14) Imager was operated by the National Oceanic and Atmospheric Administration (NOAA) in an experimental rapid scan 1-min mode during parts of 2012, 2013, 2014, and 2015. This scan mode, known as the Super Rapid Scan Operations for GOES-R (SRSOR), emulates the high-temporal-resolution sampling that will be provided by the Advanced Baseline Imager on the next-generation GOES-R series. NOAA/National Weather Service/Storm Prediction Center (SPC) forecasters utilized the 1-min imagery extensively in operations when available over convectively active regions. They found it provided them with unique insight into relevant features and processes before, during, and after convective initiation. This paper introduces how the SRSOR datasets from GOES-14 were used by SPC forecasters and how these data are likely to be applied when available operationally from GOES-R. Several animations, included as supplemental material, showcase the rapid change of severe weather–related phenomena observed during the 2014 and 2015 SRSOR campaigns from the GOES-14 Imager.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/10.1175/WAF-D-15-0135.s1.

Corresponding author address: William E. Line, NOAA/NWS/NCEP/Storm Prediction Center, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: bill.line@noaa.gov

Supplementary Materials

    • Supplemental Materials (ZIP 135.41 MB)
Save