• Baldwin, M., Treadon R. , and Contorno S. , 1994: Precipitation type prediction using a decision tree approach with NMC’s Mesoscale Eta Model. Preprints, 10th Conf. on Numerical Weather Prediction, Portland, OR, Amer. Meteor. Soc., 3031.

  • Benjamin, S. G., Grell G. A. , Brown J. M. , and Smirnova T. G. , 2004a: Mesoscale weather prediction with the RUC hybrid isentropic-terrain-following coordinate model. Mon. Wea. Rev., 132, 473494, doi:10.1175/1520-0493(2004)132<0473:MWPWTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004b: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., doi:10.1175/MWR-D-15-0242.1, in press.

    • Search Google Scholar
    • Export Citation
  • Bocchieri, J. R., 1979: A new operational system for forecasting precipitation type. Mon. Wea. Rev., 107, 637649, doi:10.1175/1520-0493(1979)107<0637:ANOSFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bocchieri, J. R., 1980: The objective use of upper air soundings to specify precipitation type. Mon. Wea. Rev., 108, 596603, doi:10.1175/1520-0493(1980)108<0596:TOUOUA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bocchieri, J. R., and Maglaras G. J. , 1983: An improved operational system for forecasting precipitation type. Mon. Wea. Rev., 111, 405419, doi:10.1175/1520-0493(1983)111<0405:AIOSFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bourgouin, P., 2000: A method to determine precipitation types. Wea. Forecasting, 15, 583592, doi:10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeGaetano, A. T., Belcher B. N. , and Spier P. L. , 2008: Short-term ice accretion forecasts for electric utilities using the Weather Research and Forecasting Model and a modified precipitation-type algorithm. Wea. Forecasting, 23, 838853, doi:10.1175/2008WAF2006106.1.

    • Search Google Scholar
    • Export Citation
  • Elmore, K. L., Grams H. M. , Apps D. , and Reeves H. D. , 2015: Verifying forecast precipitation type with mPING. Wea. Forecasting, 30, 656667, doi:10.1175/WAF-D-14-00068.1.

    • Search Google Scholar
    • Export Citation
  • Ikeda, K., Steiner M. , Pinto J. , and Alexander C. A. , 2013: Evaluation of cold-season precipitation forecasts generated by the hourly updating High-Resolution Rapid Refresh model. Wea. Forecasting, 28, 921939, doi:10.1175/WAF-D-12-00085.1.

    • Search Google Scholar
    • Export Citation
  • Keeter, K. K., and Cline J. W. , 1991: The objective use of observed and forecast thickness values to predict precipitation type in North Carolina. Wea. Forecasting, 6, 456469, doi:10.1175/1520-0434(1991)006<0456:TOUOOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Manikin, G. S., 2005: An overview of precipitation type forecasting using NAM and SREF data. Preprints, 21st Conf. on Weather Analysis and Forecasting/17th Conf. on Numerical Weather Prediction, Washington, DC, Amer. Meteor. Soc., 8A.6. [Available online at https://ams.confex.com/ams/pdfpapers/94838.pdf.]

  • Office of Federal Coordinator for Meteorology, 2005: Federal Meteorological Handbook No. 1—Surface Weather Observations and Reports. [Available online at http://www.ofcm.gov/fmh-1/fmh1.htm.]

  • Ramer, J., 1993: An empirical technique for diagnosing precipitation type from model output. Preprints, Fifth Int. Conf. on Aviation Weather Systems, Vienna, VA, Amer. Meteor. Soc., 227230.

  • Reeves, H. D., Elmore K. L. , Ryzhkov A. , Schuur T. , and Krause J. , 2014: Sources of uncertainty in precipitation-type forecasting. Wea. Forecasting, 29, 936953, doi:10.1175/WAF-D-14-00007.1.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., Park H.-S. , Ryzhkov A. V. , and Reeves H. D. , 2012: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol., 51, 763779, doi:10.1175/JAMC-D-11-091.1.

    • Search Google Scholar
    • Export Citation
  • Smith, T. L., Benjamin S. G. , Brown J. M. , Weygandt S. , Smirnova T. , and Schwartz B. , 2008: Convection forecasts from the hourly updated, 3-km High Resolution Rapid Refresh (HRRR) Model. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 11.1. [Available online at https://ams.confex.com/ams/pdfpapers/142055.pdf.]

  • Thériault, J. M., and Stewart R. E. , 2010: A parameterization of the microphysical processes forming many types of winter precipitation. J. Atmos. Sci., 67, 14921508, doi:10.1175/2009JAS3224.1.

    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., Stewart R. E. , and Henson W. , 2006: On the dependence of winter precipitation types on temperature, precipitation rate, and associated features. J. Appl. Meteor. Climatol., 49, 14291442, doi:10.1175/2010JAMC2321.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., and Eidhammer T. , 2014: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci., 71, 36363658, doi:10.1175/JAS-D-13-0305.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Rasmussen R. M. , and Manning K. , 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Field P. R. , Rasmussen R. M. , and Hall W. D. , 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Vislocky, R. L., and Young G. S. , 1989: The use of perfect prog forecasts to improve model output statistics forecasts of precipitation probability. Wea. Forecasting, 4, 202209, doi:10.1175/1520-0434(1989)004<0202:TUOPPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wagner, A. J., 1957: Mean temperature from 1000 to 500 mb as a predictor of precipitation type. Bull. Amer. Meteor. Soc., 10, 584590.

    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., Baldwin M. E. , Mullen S. L. , and Cortinas J. V. Jr., 2005: Short-range ensemble forecasts of precipitation type. Wea. Forecasting, 20, 609626, doi:10.1175/WAF871.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 458 280 41
PDF Downloads 401 235 29

Explicit Precipitation-Type Diagnosis from a Model Using a Mixed-Phase Bulk Cloud–Precipitation Microphysics Parameterization

View More View Less
  • 1 NOAA/Earth System Research Laboratory, Boulder, Colorado
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR), both operational at NOAA’s National Centers for Environmental Prediction (NCEP) use the Thompson et al. mixed-phase bulk cloud microphysics scheme. This scheme permits predicted surface precipitation to simultaneously consist of rain, snow, and graupel at the same location under certain conditions. Here, the explicit precipitation-type diagnostic method is described as used in conjunction with the Thompson et al. scheme in the RAP and HRRR models. The postprocessing logic combines the explicitly predicted multispecies hydrometeor data and other information from the model forecasts to produce fields of surface precipitation type that distinguish between rain and freezing rain, and to also portray areas of mixed precipitation. This explicit precipitation-type diagnostic method is used with the NOAA operational RAP and HRRR models. Verification from two winter seasons from 2013 to 2015 is provided against METAR surface observations. An example of this product from a January 2015 south-central United States winter storm is also shown.

Additional affiliation: Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado.

Corresponding author address: Stanley G. Benjamin, NOAA/ESRL, R/GSD1, 325 Broadway, Boulder, CO 80305-3328. E-mail: stan.benjamin@noaa.gov

Abstract

The Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR), both operational at NOAA’s National Centers for Environmental Prediction (NCEP) use the Thompson et al. mixed-phase bulk cloud microphysics scheme. This scheme permits predicted surface precipitation to simultaneously consist of rain, snow, and graupel at the same location under certain conditions. Here, the explicit precipitation-type diagnostic method is described as used in conjunction with the Thompson et al. scheme in the RAP and HRRR models. The postprocessing logic combines the explicitly predicted multispecies hydrometeor data and other information from the model forecasts to produce fields of surface precipitation type that distinguish between rain and freezing rain, and to also portray areas of mixed precipitation. This explicit precipitation-type diagnostic method is used with the NOAA operational RAP and HRRR models. Verification from two winter seasons from 2013 to 2015 is provided against METAR surface observations. An example of this product from a January 2015 south-central United States winter storm is also shown.

Additional affiliation: Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado.

Corresponding author address: Stanley G. Benjamin, NOAA/ESRL, R/GSD1, 325 Broadway, Boulder, CO 80305-3328. E-mail: stan.benjamin@noaa.gov
Save