• Accadia, C., Mariani S. , Casaioli M. , Lavagnini A. , and Speranza A. , 2003: Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average method on high-resolution verification grids. Wea. Forecasting, 18, 918932, doi:10.1175/1520-0434(2003)018<0918:SOPFSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arakawa, A., 2004: The cumulus parameterization problem: Past, present, and future. J. Climate, 17, 24932525, doi:10.1175/1520-0442(2004)017<2493:RATCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M., and Mitchell K. , 1997: The NCEP hourly multi-sensor U. S. precipitation analysis for operations and GCIP research. Preprints, 13th Conf. on Hydrology, Long Beach, CA, Amer. Meteor. Soc., 54–55.

  • Berenguer, M., Surcel M. , Zawadzki I. , Xue M. , and Kong F. , 2012: The diurnal cycle of precipitation from continental radar mosaics and numerical weather prediction models. Part II: Intercomparison among numerical models and with nowcasting. Mon. Wea. Rev., 140, 26892705, doi:10.1175/MWR-D-11-00181.1.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and Albrecht B. A. , 1987: Conserved variable analysis of the convective boundary layer thermodynamic structure over the tropical oceans. J. Atmos. Sci., 44, 8399, doi:10.1175/1520-0469(1987)044<0083:CVAOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., and Chen T. C. , 2007: Comparison of the diurnal precipitation cycle in convection-resolving and non-convection-resolving mesoscale models. Mon. Wea. Rev., 135, 34563473, doi:10.1175/MWR3467.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., Xue M. , and Kong F. , 2009: A comparison of precipitation forecast skill between small convection-allowing and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140, doi:10.1175/2009WAF2222222.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., Gallus W. A. Jr., Xue M. , and Kong F. , 2010: Convection-allowing and convection-parameterizing ensemble forecasts of a mesoscale convective vortex and associated severe weather environment. Wea. Forecasting, 25, 10521081, doi:10.1175/2010WAF2222390.1.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., and Coauthors, 2012: An overview of the 2010 Hazardous Weather Testbed Experimental Forecast Program Spring Experiment. Bull. Amer. Meteor. Soc., 93, 5574, doi:10.1175/BAMS-D-11-00040.1.

    • Search Google Scholar
    • Export Citation
  • Done, J., Davis C. A. , and Weisman M. , 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Search Google Scholar
    • Export Citation
  • Du, J., DiMego G. , Zhou B. , Jovic D. , Ferrier B. , Yang B. , and Benjamin S. , 2014: NCEP regional ensembles: Evolving toward hourly-updated convection-allowing scale and storm-scale predictions within a unified regional modeling system. 22nd Conf. on Numerical Weather Prediction/26th Conf. on Weather Analysis and Forecasting, Atlanta, GA, Amer. Meteor. Soc., J1.4. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Manuscript/Paper239030/NCEP%20Regional%20Ensembles.pdf.]

  • Dyer, A. J., and Hicks B. B. , 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715721, doi:10.1002/qj.49709641012.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2001: Ability of a poor man’s ensemble to predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 24612480, doi:10.1175/1520-0493(2001)129<2461:AOAPMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ek, M., Mitchell K. E. , Lin Y. , Rogers E. , Grunmann P. , Koren V. , Gayno G. , and Tarpley J. D. , 2003: Implementation of Noah land-surface model advances in the NCEP operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Evans, C., Van Dyke D. F. , and Lericos T. , 2014: How do forecasters utilize output from a convection-permitting ensemble forecast system? Case study of a high-impact precipitation event. Wea. Forecasting, 29, 466486, doi:10.1175/WAF-D-13-00064.1.

    • Search Google Scholar
    • Export Citation
  • Fels, S. B., and Schwarzkopf M. D. , 1975: The simplified exchange approximation: A new method for radiative transfer calculations. J. Atmos. Sci., 32, 14751488, doi:10.1175/1520-0469(1975)032<1475:TSEAAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., Lin Y. , Black T. , Rogers E. , and DiMego G. , 2002: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. Preprints, 15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 10.1. [Available online at https://ams.confex.com/ams/SLS_WAF_NWP/techprogram/paper_47241.htm.]

  • Fritsch, J. M., and Coauthors, 1998: Quantitative precipitation forecasting: Report of the Eighth Prospectus Development Team, U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 79, 285299, doi:10.1175/1520-0477(1998)079<0285:QPFROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, J., and Xue M. , 2008: An efficient dual-resolution approach for ensemble data assimilation and tests with simulated Doppler radar data. Mon. Wea. Rev., 136, 945963, doi:10.1175/2007MWR2120.1.

    • Search Google Scholar
    • Export Citation
  • Gao, J., Xue M. , Brewster K. , and Droegemeier K. K. , 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469, doi:10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 1999: Hypothesis tests for evaluating numerical precipitation forecasts. Wea. Forecasting, 14, 155167, doi:10.1175/1520-0434(1999)014<0155:HTFENP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and Pan H. L. , 1996: Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Wea. Rev., 124, 23222339, doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and Lim J. J. , 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hu, M., Xue M. , and Brewster K. , 2006: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698, doi:10.1175/MWR3092.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 1990: The step-mountain coordinate: Physical package. Mon. Wea. Rev., 118, 14291443, doi:10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, NOAA/NWS, 61 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/phys_refs/SURFACE_LAYER/eta_part4.pdf.]

  • Janjić, Z. I., 2003: A nonhydrostatic model based on a new approach. Meteor. Atmos. Phys., 82, 271285, doi:10.1007/s00703-001-0587-6.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2005: A unified model approach from meso to global scales. Geophysical Research Abstracts, Vol. 7, Abstract 05582. [Available online at http://www.cosis.net/abstracts/EGU05/05582/EGU05-J-05582.pdf.]

  • Janjić, Z. I., 2010: Recent advances in global nonhydrostatic modeling at NCEP. Proc. Workshop on Non-hydrostatic Modelling, ECMWF, Reading, United Kingdom. [Available online at http://nwmstest.ecmwf.int/newsevents/meetings/workshops/2010/Non_hydrostatic_Modelling/presentations/Janjić.pdf.]

  • Janjić, Z. I., and Black T. , 2007: An ESMF unified model for a broad range of spatial and temporal scales. Geophysical Research Abstracts, Vol. 9, Abstract 05025. [Available online at http://meetings.copernicus.org/www.cosis.net/abstracts/EGU2007/05025/EGU2007-J-05025.pdf.]

  • Janjić, Z. I., and Gall R. , 2012: Scientific documentation of the NCEP Nonhydrostatic Multiscale Model on the B Grid (NMMB). Part 1: Dynamics. NCAR Tech. Note NCAR/TN-489+STR, 75 pp. [Available online at http://nldr.library.ucar.edu/repository/assets/technotes/TECH-NOTE-000-000-000-857.pdf.]

  • Janjić, Z. I., Janjić T. , and Vasic R. , 2011: A class of conservative fourth-order advection schemes and impact of enhanced formal accuracy on extended-range forecasts. Mon. Wea. Rev., 139, 15561568, doi:10.1175/2010MWR3448.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1998: Multiscale convective overturning in mesoscale convective systems: Reconciling observations, simulations, and theory. Mon. Wea. Rev., 126, 22542273, doi:10.1175/1520-0493(1998)126<2254:MCOIMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., Weiss S. J. , Levit J. J. , Baldwin M. E. , and Bright D. R. , 2006: Examination of convection-allowing configurations of the WRF Model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167181, doi:10.1175/WAF906.1.

    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2014: An overview of CAPS storm-scale ensemble forecast for the 2014 NOAA HWT Spring Forecasting Experiment. 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 43. [Available online at https://ams.confex.com/ams/27SLS/webprogram/Paper255958.html.]

  • Lacis, A. A., and Hansen J. E. , 1974: A parameterization for the absorption of solar radiation in the earth’s atmosphere. J. Atmos. Sci., 31, 118133, doi:10.1175/1520-0469(1974)031<0118:APFTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lim, K. S., and Hong S. Y. , 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 15871612, doi:10.1175/2009MWR2968.1.

    • Search Google Scholar
    • Export Citation
  • Ma, J., Zhu Y. , Hou D. , Zhou X. , and Peña M. , 2014: Ensemble transform with 3D rescaling initialization method. Mon. Wea. Rev., 142, 40534073, doi:10.1175/MWR-D-13-00367.1.

    • Search Google Scholar
    • Export Citation
  • Mason, I., 1982: A model for assessment of weather forecasts. Aust. Meteor. Mag., 30, 291303.

  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and Yau M. K. , 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, doi:10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and Obukhov A. M. , 1954: Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geofiz. Inst, 24, 163187.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., Curry J. A. , and Khvorostyanov V. I. , 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., 2000: Large-eddy simulation of radiation fog. Bound.-Layer Meteor., 94, 461493, doi:10.1023/A:1002490423389.

  • Nakanishi, M., 2001: Improvement of the Mellor–Yamada turbulence closure model based on large-eddy simulation data. Bound.-Layer Meteor., 99, 349378, doi:10.1023/A:1018915827400.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and Niino H. , 2004: An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, doi:10.1023/B:BOUN.0000020164.04146.98.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and Niino H. , 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • NOAA, 2015: 74 year list of severe weather fatalities. Office of Climate, Water, and Weather Services, NWS, 2 pp. [Available online at http://www.nws.noaa.gov/om/hazstats/resources/weather_fatalities.pdf.]

  • Noh, Y., Cheon W. G. , and Raasch S. , 2003: The role of preconditioning in the evolution of open-ocean deep convection. J. Phys. Oceanogr., 33, 11451166, doi:10.1175/1520-0485(2003)033<1145:TROPIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861, doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and Lean H. W. , 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Roebber, P. J., Schultz D. M. , Colle B. A. , and Stensrud D. J. , 2004: Toward improved prediction: High-resolution and ensemble modeling systems in operations. Wea. Forecasting, 19, 936949, doi:10.1175/1520-0434(2004)019<0936:TIPHAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570575, doi:10.1175/1520-0434(1990)005<0570:TCSIAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schwartz, C. S., and Coauthors, 2009: Next-day convection-allowing WRF model guidance: A second look at 2-km versus 4-km grid spacing. Mon. Wea. Rev., 137, 33513372, doi:10.1175/2009MWR2924.1.

    • Search Google Scholar
    • Export Citation
  • Schwarzkopf, M. D., and Fels S. B. , 1991: The simplified exchange method revisited: An accurate, rapid method for computation of infrared cooling rates and fluxes. J. Geophys. Res., 96, 90759096, doi:10.1029/89JD01598.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Sukoriansky, S., Galperian B. , and Perov V. , 2005: Application of a new spectral theory of stable stratified turbulence to the atmospheric boundary layer over sea ice. Bound.-Layer Meteor., 117, 231257, doi:10.1007/s10546-004-6848-4.

    • Search Google Scholar
    • Export Citation
  • Sukovich, E. M., Ralph F. M. , Barthold F. E. , Reynolds D. W. , and Novak D. R. , 2014: Extreme quantitative precipitation forecast performance at the Weather Prediction Center from 2001 to 2011. Wea. Forecasting, 29, 894911, doi:10.1175/WAF-D-13-00061.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., Rasmussen R. M. , and Manning K. , 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Toth, Z., and Kalnay E. , 1997: Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Rev., 125, 32973319, doi:10.1175/1520-0493(1997)125<3297:EFANAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Troen, I. B., and Mahrt L. , 1986: A simple model of the atmospheric boundary layer; sensitivity to surface evaporation. Bound.-Layer Meteor., 37, 129148, doi:10.1007/BF00122760.

    • Search Google Scholar
    • Export Citation
  • Vasiloff, S. V., and Coauthors, 2007: Improving QPE and very short term QPF: An initiative for a community-wide integrated approach. Bull. Amer. Meteor. Soc., 88, 18991911, doi:10.1175/BAMS-88-12-1899.

    • Search Google Scholar
    • Export Citation
  • Wandishin, M. S., Mullen S. L. , Stensrud D. J. , and Brooks H. E. , 2001: Evaluation of a short-range multimodel ensemble system. Mon. Wea. Rev., 129, 729747, doi:10.1175/1520-0493(2001)129<0729:EOASRM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., 1970: Profile relationships: The log-linear range, and extension to strong stability. Quart. J. Roy. Meteor. Soc., 96, 6790, doi:10.1002/qj.49709640708.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Skamarock W. C. , and Klemp J. B. , 1997: The resolution dependence of explicitly modeled convective systems. Mon. Wea. Rev., 125, 527548, doi:10.1175/1520-0493(1997)125<0527:TRDOEM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., Davis C. , Wang W. , Manning K. W. , and Klemp J. B. , 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437, doi:10.1175/2007WAF2007005.1.

    • Search Google Scholar
    • Export Citation
  • Xue, M., Wang D. , Gao J. , Brewster K. , and Droegemeier K. K. , 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139170, doi:10.1007/s00703-001-0595-6.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q.-Y., and Carr F. H. , 1997: A prognostic cloud scheme for NWP models. Mon. Wea. Rev., 125, 19311953, doi:10.1175/1520-0493(1997)125<1931:APCSFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 131 59 4
PDF Downloads 94 47 2

A Comparison of 36–60-h Precipitation Forecasts from Convection-Allowing and Convection-Parameterizing Ensembles

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 2 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
  • | 4 Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Previous studies examining convection-allowing models (CAMs), as well as NOAA/Hazardous Weather Testbed Spring Forecasting Experiments (SFEs) have typically emphasized “day 1” (12–36 h) forecast guidance. These studies find a distinct advantage in CAMs relative to models that parameterize convection, especially for fields strongly tied to convection like precipitation. During the 2014 SFE, “day 2” (36–60 h) forecast products from a CAM ensemble provided by the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma were examined. Quantitative precipitation forecasts (QPFs) from the CAPS ensemble, known as the Storm Scale Ensemble Forecast (SSEF) system, are compared to NCEP’s operational Short Range Ensemble Forecast (SREF) system, which provides lateral boundary conditions for the SSEF, to see if the CAM ensemble outperforms the SREF through forecast hours 36–60. Equitable threat scores (ETSs) were computed for precipitation thresholds ranging from 0.10 to 0.75 in. for each SSEF and SREF member, as well as ensemble means, for 3-h accumulation periods. The ETS difference between the SSEF and SREF peaked during hours 36–42. Probabilistic forecasts were evaluated using the area under the receiver operating characteristic curve (ROC area). The SSEF had higher values of ROC area, especially at thresholds ≥ 0.50 in. Additionally, time–longitude diagrams of diurnally averaged rainfall were constructed for each SSEF/SREF ensemble member. Spatial correlation coefficients between forecasts and observations in time–longitude space indicated that the SSEF depicted the diurnal cycle much better than the SREF, which underforecasted precipitation with a peak that had a 3-h phase lag. A minority of SREF members performed well.

Corresponding author address: Eswar R. Iyer, School of Meteorology, University of Oklahoma, NWC, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: eswar.iyer@noaa.gov

Abstract

Previous studies examining convection-allowing models (CAMs), as well as NOAA/Hazardous Weather Testbed Spring Forecasting Experiments (SFEs) have typically emphasized “day 1” (12–36 h) forecast guidance. These studies find a distinct advantage in CAMs relative to models that parameterize convection, especially for fields strongly tied to convection like precipitation. During the 2014 SFE, “day 2” (36–60 h) forecast products from a CAM ensemble provided by the Center for Analysis and Prediction of Storms (CAPS) at the University of Oklahoma were examined. Quantitative precipitation forecasts (QPFs) from the CAPS ensemble, known as the Storm Scale Ensemble Forecast (SSEF) system, are compared to NCEP’s operational Short Range Ensemble Forecast (SREF) system, which provides lateral boundary conditions for the SSEF, to see if the CAM ensemble outperforms the SREF through forecast hours 36–60. Equitable threat scores (ETSs) were computed for precipitation thresholds ranging from 0.10 to 0.75 in. for each SSEF and SREF member, as well as ensemble means, for 3-h accumulation periods. The ETS difference between the SSEF and SREF peaked during hours 36–42. Probabilistic forecasts were evaluated using the area under the receiver operating characteristic curve (ROC area). The SSEF had higher values of ROC area, especially at thresholds ≥ 0.50 in. Additionally, time–longitude diagrams of diurnally averaged rainfall were constructed for each SSEF/SREF ensemble member. Spatial correlation coefficients between forecasts and observations in time–longitude space indicated that the SSEF depicted the diurnal cycle much better than the SREF, which underforecasted precipitation with a peak that had a 3-h phase lag. A minority of SREF members performed well.

Corresponding author address: Eswar R. Iyer, School of Meteorology, University of Oklahoma, NWC, 120 David L. Boren Blvd., Norman, OK 73072. E-mail: eswar.iyer@noaa.gov
Save