Observing Boundary-Layer Winds from Hot-Air Balloon Flights

Evert I. F. de Bruijn KNMI, De Bilt, Netherlands

Search for other papers by Evert I. F. de Bruijn in
Current site
Google Scholar
PubMed
Close
,
Siebren de Haan KNMI, De Bilt, Netherlands

Search for other papers by Siebren de Haan in
Current site
Google Scholar
PubMed
Close
,
Fred C. Bosveld KNMI, De Bilt, Netherlands

Search for other papers by Fred C. Bosveld in
Current site
Google Scholar
PubMed
Close
,
Ben Wichers Schreur KNMI, De Bilt, Netherlands

Search for other papers by Ben Wichers Schreur in
Current site
Google Scholar
PubMed
Close
, and
Albert A. M. Holtslag Wageningen University, Wageningen, Netherlands

Search for other papers by Albert A. M. Holtslag in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

High-resolution upper-air wind observations are sparse, and additional observations are a welcome source of meteorological information. In this paper the potential of applying balloon flights for upper-air wind measurements is explored, and the meteorological content of this information is investigated. The displacement of a hot-air balloon is a measure for the wind speed and direction and thus a potential source for wind observations in the lower part of the troposphere. The response time of the balloon on the changing wind is fast in the beginning and levels off for smaller relative wind speeds. Four case studies are presented, and the balloon-derived winds are compared with other wind observations and with results from the HIRLAM–ALADIN Research on Mesoscale Operational NWP in Europe (HARMONIE) model. It turns out that hot-air balloon tracks can indeed produce useful wind observations just above and in the atmospheric boundary layer (ABL).

Corresponding author address: Cisco de Bruijn, KNMI, P.O. Box 201, 3730 AE, De Bilt, Netherlands. E-mail: cisco.de.bruijn@knmi.nl

Abstract

High-resolution upper-air wind observations are sparse, and additional observations are a welcome source of meteorological information. In this paper the potential of applying balloon flights for upper-air wind measurements is explored, and the meteorological content of this information is investigated. The displacement of a hot-air balloon is a measure for the wind speed and direction and thus a potential source for wind observations in the lower part of the troposphere. The response time of the balloon on the changing wind is fast in the beginning and levels off for smaller relative wind speeds. Four case studies are presented, and the balloon-derived winds are compared with other wind observations and with results from the HIRLAM–ALADIN Research on Mesoscale Operational NWP in Europe (HARMONIE) model. It turns out that hot-air balloon tracks can indeed produce useful wind observations just above and in the atmospheric boundary layer (ABL).

Corresponding author address: Cisco de Bruijn, KNMI, P.O. Box 201, 3730 AE, De Bilt, Netherlands. E-mail: cisco.de.bruijn@knmi.nl
Save
  • Baas, P., Bosveld F. C. , Klein Baltink H. , and Holtslag A. A. M. , 2009: A climatology of nocturnal low-level jets at Cabauw. J. Appl. Meteor. Climatol., 48, 16271642, doi:10.1175/2009JAMC1965.1.

    • Search Google Scholar
    • Export Citation
  • Baas, P., Bosveld F. C. , and Burgers G. , 2015: The impact of atmospheric stability on the near-surface wind over sea in storm conditions. Wind Energy, 19, 187198, doi:10.1002/we.1825.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., 2008: The role of shear in the morning transition boundary layer. Bound.-Layer Meteor., 129, 395410, doi:10.1007/s10546-008-9324-8.

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., Edwards J. M. , and Lapworth A. J. , 2006: Simulation of the observed evening transition and nocturnal boundary layers: Large-eddy simulation. Quart. J. Roy. Meteor. Soc., 132, 8199, doi:10.1256/qj.05.64.

    • Search Google Scholar
    • Export Citation
  • Bosveld, F. C., and Coauthors, 2014: The GABLS Third Intercomparison Case for Boundary Layer Model Evaluation. Part B: Results and process understanding. Bound.-Layer Meteor., 152, 157187, doi:10.1007/s10546-014-9919-1.

    • Search Google Scholar
    • Export Citation
  • Businger, S., Johnson R. , and Talbot R. , 2006: Scientific insights from four generations of Lagrangian smart balloons in atmospheric research. Bull. Amer. Meteor. Soc., 87, 15391554, doi:10.1175/BAMS-87-11-1539.

    • Search Google Scholar
    • Export Citation
  • de Haan, S., 2011: High-resolution wind and temperature observations from aircraft tracked by Mode-S air traffic control radar. J. Geophys. Res., 116, 21562202, doi:10.1029/2010JD015264.

    • Search Google Scholar
    • Export Citation
  • Houchi, K., Stoffelen A. , Marseille G. , and de Kloe J. , 2015: Statistical quality control of high-resolution winds of different radiosonde types for climatology analysis. J. Atmos. Qceanic Technol., 32, 17961811, doi:10.1175/JTECH-D-14-00160.1.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J., and Coauthors, 2014: Global Hawk dropsonde observations of the Arctic atmosphere obtained during Winter Storms and Pacific Atmospheric Rivers (WISPAR) field campaign. Atmos. Meas. Tech., 7, 39173926, doi:10.5194/amt-7-3917-2014.

    • Search Google Scholar
    • Export Citation
  • Johnson, J. C., 1954: Physical Meteorology. J. Wiley and Sons–M.I.T. Technology Press, 393 pp.

  • Jonassen, M. O., Tisler P. , Altstädter B. , Scholtz A. , Vihma T. , Lampert A. , König-Langlo G. , and Lüpkes C. , 2015: Application of remotely piloted aircraft systems in observing the atmospheric boundary layer over Antarctic sea ice. Polar Res., 34, 25 651, doi:10.3402/polar.v34.25651.

    • Search Google Scholar
    • Export Citation
  • Kristensen, L., 1998: Cup anemometer behavior in turbulent environments. J. Atmos. Oceanic Technol., 15, 517, doi:10.1175/1520-0426(1998)015<0005:CABITE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Laakso, L., and Coauthors, 2007: Hot-air balloon as a platform for boundary layer profile measurements during particle formation. Boreal Environ. Res., 12, 279294.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., and Coauthors, 2014: The BLLAST field experiment: Boundary-Layer Late Afternoon and Sunset Turbulence. Atmos. Chem. Phys., 14, 10 93110 960, doi:10.5194/acp-14-10931-2014.

    • Search Google Scholar
    • Export Citation
  • Munson, B. R., Young D. F. , and Okiishi T. , 1990: Fundamentals of Fluid Mechanics. J. Wiley and Sons, 843 pp.

  • Seity, Y., Brousseau P. , Malardel S. , Hello G. , Bénard P. , Bouttier F. , Lac C. , and Masson V. , 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Search Google Scholar
    • Export Citation
  • Siebesma, A. P., Soares P. M. M. , and Teixeira J. , 2007: A combined eddy-diffusivity mass-flux approach for the convective boundary layer. J. Atmos. Sci., 64, 12301248, doi:10.1175/JAS3888.1.

    • Search Google Scholar
    • Export Citation
  • Voss, P. B., Hole L. R. , Helbling E. F. , and Roberts T. G. , 2013: Continuous in-situ soundings in the Artic boundary layer: A new atmospheric measurement technique using controlled meteorological balloons. J. Intell. Rob. Syst., 70, 609617, doi:10.1007/s10846-012-9758-6.

    • Search Google Scholar
    • Export Citation
  • WMO, 2003: Aircraft Meteorological Data Relay (AMDAR) reference manual. WMO-958, 80 pp. [Available online at https://www.wmo.int/pages/prog/www/GOS/ABO/AMDAR/publications/AMDAR_Reference_Manual_2003.pdf.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1535 540 42
PDF Downloads 892 262 15