The Use of the Deviation Angle Variance Technique on Geostationary Satellite Imagery to Estimate Tropical Cyclone Size Parameters

Klaus Dolling Department of Chemistry, Physics, and Earth Science, Miami Dade College, Miami, Florida

Search for other papers by Klaus Dolling in
Current site
Google Scholar
PubMed
Close
,
Elizabeth A. Ritchie School of Physical, Environmental, and Mathematical Sciences, University of New South Wales, Canberra, Australian Capital Territory, Australia

Search for other papers by Elizabeth A. Ritchie in
Current site
Google Scholar
PubMed
Close
, and
J. Scott Tyo School of Engineering and Information Technology, University of New South Wales, Canberra, Australian Capital Territory, Australia

Search for other papers by J. Scott Tyo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study extends past research based on the deviation angle variance (DAV) technique that utilizes digital brightness temperatures from longwave infrared satellite images to objectively measure the symmetry of a tropical cyclone (TC). In previous work, the single-pixel DAV values were used as an objective estimator of storm intensity while maps of the DAV values indicated areas where tropical cyclogenesis was occurring. In this study the spatial information in the DAV maps is utilized along with information from the Cooperative Institute for Research in the Atmosphere’s extended best-track archive and the Statistical Hurricane Intensity Prediction Scheme model to create multiple linear regression models of wind radii parameters for TCs in the North Atlantic basin. These models are used to estimate both symmetric, and by quadrant, 34-, 50-, and 64-kt wind radii (where 1 kt = 0.51 m s−1 1) on a half-hourly time scale. The symmetric model assumes azimuthal symmetry and has mean absolute errors of 38.5, 23.2, and 13.5 km (20.8, 12.5, and 7.3 n mi) for the 34-, 50-, and 64-kt wind radii, respectively, which are lower than results for most other techniques except for those based on AMSU. The asymmetric model independently estimates radii in each quadrant and produces mean absolute errors for the wind radii that are generally highest in the northwest quadrant and lowest in the southwest quadrant similar to other techniques. However, as a percentage of the average wind radii from aircraft reconnaissance, all quadrants have similar errors.

Corresponding author address: E. Ritchie, School of Physical, Environmental, and Mathematical Sciences, University of New South Wales, P.O. Box 7916, Canberra BC 2610, Australia. E-mail: e.ritchie@adfa.edu.au

Abstract

This study extends past research based on the deviation angle variance (DAV) technique that utilizes digital brightness temperatures from longwave infrared satellite images to objectively measure the symmetry of a tropical cyclone (TC). In previous work, the single-pixel DAV values were used as an objective estimator of storm intensity while maps of the DAV values indicated areas where tropical cyclogenesis was occurring. In this study the spatial information in the DAV maps is utilized along with information from the Cooperative Institute for Research in the Atmosphere’s extended best-track archive and the Statistical Hurricane Intensity Prediction Scheme model to create multiple linear regression models of wind radii parameters for TCs in the North Atlantic basin. These models are used to estimate both symmetric, and by quadrant, 34-, 50-, and 64-kt wind radii (where 1 kt = 0.51 m s−1 1) on a half-hourly time scale. The symmetric model assumes azimuthal symmetry and has mean absolute errors of 38.5, 23.2, and 13.5 km (20.8, 12.5, and 7.3 n mi) for the 34-, 50-, and 64-kt wind radii, respectively, which are lower than results for most other techniques except for those based on AMSU. The asymmetric model independently estimates radii in each quadrant and produces mean absolute errors for the wind radii that are generally highest in the northwest quadrant and lowest in the southwest quadrant similar to other techniques. However, as a percentage of the average wind radii from aircraft reconnaissance, all quadrants have similar errors.

Corresponding author address: E. Ritchie, School of Physical, Environmental, and Mathematical Sciences, University of New South Wales, P.O. Box 7916, Canberra BC 2610, Australia. E-mail: e.ritchie@adfa.edu.au
Save
  • Aberson, S. D., 1998: Five-day tropical cyclone track forecasting in the North Atlantic basin. Wea. Forecasting, 13, 10051015, doi:10.1175/1520-0434(1998)013<1005:FDTCTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bessho, K., DeMaria M. , and Knaff J. A. , 2006: Tropical cyclone wind retrievals from the Advanced Microwave Sounding Unit: Application to surface wind analysis. J. Appl. Meteor. Climatol., 45, 399415, doi:10.1175/JAM2352.1.

    • Search Google Scholar
    • Export Citation
  • Brand, S., and Guard C. P. , 1979: An observational study of extratropical storms evolved from tropical cyclones in the western North Pacific. J. Meteor. Soc. Japan, 57, 479482.

    • Search Google Scholar
    • Export Citation
  • Brennan, M. J., Knabb R. D. , Mainelli M. , and Kimberlain T. B. , 2009: Atlantic Hurricane season of 2007. Mon. Wea. Rev., 137, 40614088, doi:10.1175/2009MWR2995.1.

    • Search Google Scholar
    • Export Citation
  • Brueske, K. F., and Velden C. , 2003: Satellite-based tropical cyclone intensity estimation using the NOAA-KLM series Advanced Microwave Sounding Unit (AMSU). Mon. Wea. Rev., 131, 687697, doi:10.1175/1520-0493(2003)131<0687:SBTCIE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cocks, S. B., and Gray W. M. , 2002: Variability of the outer wind profiles of western North Pacific typhoons: Classifications and techniques for analysis and forecasting. Mon. Wea. Rev., 130, 19892005, doi:10.1175/1520-0493(2002)130<1989:VOTOWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Davidson, N. E., and Coauthors, 2014: ACCESS-TC: Vortex specification, 4DVAR initialization, verification, and structure diagnostics. Mon. Wea. Rev., 142, 12651289, doi:10.1175/MWR-D-13-00062.1.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and Kaplan J. , 1994: A statistical hurricane intensity prediction scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, doi:10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and Kaplan J. , 1999: An updated Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 14, 326337, doi:10.1175/1520-0434(1999)014<0326:AUSHIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., Mainelli M. , Shay L. K. , Knaff J. A. , and Kaplan J. , 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, doi:10.1175/WAF862.1.

    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., DeMaria M. , Knaff J. A. , and Vonder Haar T. H. , 2004: Evaluation of Advanced Microwave Sounding Unit tropical-cyclone intensity and size estimation algorithms. J. Appl. Meteor., 43, 282296, doi:10.1175/1520-0450(2004)043<0282:EOAMSU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Demuth, J. L., DeMaria M. , and Knaff J. A. , 2006: Improvements of Advanced Microwave Sounding Unit tropical cyclone intensity and size estimation algorithms. J. Appl. Meteor., 45, 15731581, doi:10.1175/JAM2429.1.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and Velden C. S. , 2002: Application of surface-adjusted GOES low-level cloud drift winds in the environment of Atlantic tropical cyclones. Part I: Methodology and validation. Mon. Wea. Rev., 130, 13331346, doi:10.1175/1520-0493(2002)130<1333:AOSAGL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., Houston S. H. , Velden C. S. , and Powell M. D. , 2002: Application of surface-adjusted GOES low-level cloud-drift winds in the environment of Atlantic tropical cyclones. Part II: Integration into surface wind analyses. Mon. Wea. Rev., 130, 13471355, doi:10.1175/1520-0493(2002)130<1347:AOSAGL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ebuchi, N., Graber H. C. , and Caruso M. J. , 2002: Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Oceanic Technol., 19, 20492062, doi:10.1175/1520-0426(2002)019<2049:EOWVOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evans, C., and Hart R. E. , 2008: Analysis of the wind field evolution associated with extratropical transition. Mon. Wea. Rev., 136, 20472065, doi:10.1175/2007MWR2051.1.

    • Search Google Scholar
    • Export Citation
  • Fiorino, M., and Elsberry R. L. , 1989: Contributions to tropical cyclone motion by small, medium and large scales in the initial vortex. Mon. Wea. Rev., 117, 721727, doi:10.1175/1520-0493(1989)117<0721:CTTCMB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., Corbosiero K. L. , and Kuo H.-C. , 2009: Cloud microphysics impact on hurricane track as revealed in idealized experiments. J. Atmos. Sci., 66, 17641778, doi:10.1175/2008JAS2874.1.

    • Search Google Scholar
    • Export Citation
  • Franklin, J. L., Black M. L. , and Valde K. , 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18, 3244, doi:10.1175/1520-0434(2003)018<0032:GDWPIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Halpern, D., 1993: Validation of Special Sensor Microwave Imager monthly-mean wind speed from July 1987 to December 1989. IEEE Trans. Geosci. Remote Sens., 31, 692699, doi:10.1109/36.225535.

    • Search Google Scholar
    • Export Citation
  • Hill, K. A., and Lackmann G. M. , 2009: Analysis of idealized tropical cyclone simulations using the Weather Research and Forecasting model: Sensitivity to turbulence parameterization and grid spacing. Mon. Wea. Rev., 137, 745765, doi:10.1175/2008MWR2220.1.

    • Search Google Scholar
    • Export Citation
  • Irish, J. L., Resio D. T. , and Ratcliff J. J. , 2008: The influence of storm size on hurricane surge. J. Phys. Oceanogr., 38, 20032013, doi:10.1175/2008JPO3727.1.

    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., Goldberg M. D. , Zehr R. M. , DeMaria M. , Purdom J. F. W. , Velden C. S. , Grody N. C. , and Kusselson S. J. , 2000: Satellite analysis of tropical cyclones using the Advanced Microwave Sounding Unit (AMSU). Bull. Amer. Meteor. Soc., 81, 12411259, doi:10.1175/1520-0477(2000)081<1241:SAOTCU>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., Knaff J. A. , Kusselson S. J. , Turk M. , Ferraro R. R. , and Kuligowski R. J. , 2005: The tropical rainfall potential (TRaP) technique. Part I: Description and examples. Wea. Forecasting, 20, 456464, doi:10.1175/WAF860.1.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., 2006: A modeling study of hurricane landfall in a dry environment. Mon. Wea. Rev., 134, 19011918, doi:10.1175/MWR3155.1.

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and Mulekar M. S. , 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 35553575, doi:10.1175/1520-0442(2004)017<3555:AYCONA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and Landsea C. W. , 1997: An El Niño–Southern Oscillation climatology and persistence (CLIPER) forecasting scheme. Wea. Forecasting, 12, 633652, doi:10.1175/1520-0434(1997)012<0633:AENOSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and Sampson C. R. , 2015: After a decade are Atlantic tropical cyclone gale force wind radii forecasts now skillful? Wea. Forecasting, 30, 702709, doi:10.1175/WAF-D-14-00149.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., Zehr R. M. , Goldberg M. D. , and Kidder S. Q. , 2000: An example of temperature structure differences in two cyclone systems derived from the Advance Microwave Sounding Unit. Wea. Forecasting, 15, 476483, doi:10.1175/1520-0434(2000)015<0476:AEOTSD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., DeMaria M. , Sampson C. R. , and Gross J. M. , 2003: Statistical, 5-day tropical cyclone intensity forecasts derived from climatology and persistence. Wea. Forecasting, 18, 8092, doi:10.1175/1520-0434(2003)018<0080:SDTCIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., Seseske S. A. , DeMaria M. , and Demuth J. L. , 2004: on the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Wea. Rev., 132, 25032510, doi:10.1175/1520-0493(2004)132<2503:OTIOVW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., Sampson C. R. , DeMaria M. , Marchok T. P. , Gross J. M. , and McAdie C. J. , 2007: Statistical tropical cyclone wind radii prediction using climatology and persistence. Wea. Forecasting, 22, 781791, doi:10.1175/WAF1026.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., DeMaria M. , Molenar D. A. , Sampson C. R. , and Seybold M. G. , 2011: An automated, objective, multiple-satellite-platform tropical cyclone surface wind analysis. J. Appl. Meteor. Climatol., 50, 21492166, doi:10.1175/2011JAMC2673.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., Longmore S. P. , DeMaria R. T. , and Molenar D. A. , 2015: Improved tropical-cyclone flight-level wind estimates using routine infrared satellite reconnaissance. J. Appl. Meteor. Climatol., 54, 463478, doi:10.1175/JAMC-D-14-0112.1.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., Slocum C. J. , Musgrave K. D. , Sampson C. R. , and Strahl B. R. , 2016: Using routinely available information to estimate tropical cyclone wind structure. Mon. Wea. Rev., 144, 12331247, doi:10.1175/MWR-D-15-0267.1.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., Knaff J. A. , Berger H. L. , Herndon D. C. , Cram T. A. , Velden C. S. , Murnane R. J. , and Hawkins J. D. , 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 892166, doi:10.1175/WAF985.1.

    • Search Google Scholar
    • Export Citation
  • Kwon, H. J., Won S.-H. , Ahn M.-H. , Suh A.-S. , and Chung H.-S. , 2002: GFDL-type typhoon initialization in MM5. Mon. Wea. Rev., 130, 29662974, doi:10.1175/1520-0493(2002)130<2966:GTTIIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kwon, I.-H., and Cheong H.-B. , 2010: Tropical cyclone initialization with a spherical high-order filter and an idealized three-dimensional bogus vortex. Mon. Wea. Rev., 138, 13441367, doi:10.1175/2009MWR2943.1.

    • Search Google Scholar
    • Export Citation
  • Leslie, L. M., and Holland G. J. , 1995: On the bogussing of tropical cyclones in numerical models: A comparison of vortex profiles. Meteor. Atmos. Phys., 56, 101110, doi:10.1007/BF01022523.

    • Search Google Scholar
    • Export Citation
  • Matyas, C. J., 2009: A spatial analysis of radar reflectivity regions within Hurricane Charley (2004). J. Climate Appl. Meteor., 48, 130142, doi:10.1175/2008JAMC1910.1.

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., Smith D. K. , and Wentz F. J. , 2001: Comparison of Special Sensor Microwave Imager and buoy-measured wind speeds from 1987 to 1997. J. Geophys. Res., 106, 11 71911 729, doi:10.1029/1999JC000097.

    • Search Google Scholar
    • Export Citation
  • Merrill, R. T., 1984: A comparison of large and small tropical cyclones. Mon. Wea. Rev., 112, 14081418, doi:10.1175/1520-0493(1984)112<1408:ACOLAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moyer, A. C., Evans J. L. , and Powell M. , 2007: Comparison of observed gale radius statistics. Meteor. Atmos. Phys., 97, 4155, doi:10.1007/s00703-006-0243-2.

    • Search Google Scholar
    • Export Citation
  • Mueller, K. J., DeMaria M. , Knaff J. A. , Kossin J. P. , and Vonder Haar T. H. , 2006: Objective estimation of tropical cyclone wind structure from infrared satellite data. Wea. Forecasting, 21, 9901005, doi:10.1175/WAF955.1.

    • Search Google Scholar
    • Export Citation
  • Piñeros, M. F., Ritchie E. A. , and Tyo J. S. , 2008: Objective measures of tropical cyclone structure and intensity change from remotely-sensed infrared image data. IEEE Trans. Geosci. Remote Sens., 46, 35743580, doi:10.1109/TGRS.2008.2000819.

    • Search Google Scholar
    • Export Citation
  • Piñeros, M. F., Ritchie E. A. , and Tyo J. S. , 2010: Detecting tropical cyclone genesis from remotely-sensed infrared image data. IEEE Trans. Geosci. Remote Sens. Lett., 7, 826830, doi:10.1109/LGRS.2010.2048694.

    • Search Google Scholar
    • Export Citation
  • Piñeros, M. F., Ritchie E. A. , and Tyo J. S. , 2011: Estimating tropical cyclone intensity from infrared image data. Wea. Forecasting, 26, 690698, doi:10.1175/WAF-D-10-05062.1.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1982: The transition of the Hurricane Frederic boundary-layer wind field from the open Gulf of Mexico to landfall. Mon. Wea. Rev., 110, 19121932, doi:10.1175/1520-0493(1982)110<1912:TTOTHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1987: Changes in the low-level kinematic and thermodynamic structure of Hurricane Alicia (1983) at landfall. Mon. Wea. Rev., 115, 7599, doi:10.1175/1520-0493(1987)115<0075:CITLLK>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and Houston S. H. , 1996: Hurricane Andrew’s landfall in south Florida. Part II: Surface wind fields and potential real-time applications. Wea. Forecasting, 11, 329349, doi:10.1175/1520-0434(1996)011<0329:HALISF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and Houston S. H. , 1998: Surface wind fields of 1995 Hurricanes Erin, Opal, Luis, Marilyn, and Roxanne at landfall. Mon. Wea. Rev., 126, 12591273, doi:10.1175/1520-0493(1998)126<1259:SWFOHE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., Dodge P. P. , and Black M. L. , 1991: The landfall of Hurricane Hugo in the Carolinas: Surface wind distribution. Wea. Forecasting, 6, 379399, doi:10.1175/1520-0434(1991)006<0379:TLOHHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pu, Z. X., and Braun S. A. , 2001: Evaluation of bogus vortex techniques with four-dimensional variational data assimilation. Mon. Wea. Rev., 129, 20232039, doi:10.1175/1520-0493(2001)129<2023:EOBVTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rienecker, M. M., Atlas R. , Schubert S. D. , and Willett C. S. , 1996: A comparison of surface wind products over the North Pacific Ocean. J. Geophys. Res., 101, 10111023, doi:10.1029/95JC03015.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., Valliere-Kelley G. , Piñeros M. F. , and Tyo J. S. , 2012: Improved tropical cyclone intensity estimation using infrared imagery and best-track data. Wea. Forecasting, 27, 12641277, doi:10.1175/WAF-D-11-00156.1.

    • Search Google Scholar
    • Export Citation
  • Ritchie, E. A., Wood K. M. , Rodriguez-Herrera O. G. , Piñeros M. F. , and Tyo J. S. , 2014: Satellite-derived tropical cyclone intensity in the North Pacific Ocean using the deviation-angle-variance technique. Wea. Forecasting, 29, 505516, doi:10.1175/WAF-D-13-00133.1.

    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., and Knaff J. A. , 2015: A consensus forecast for tropical cyclone gale wind radii. Wea. Forecasting, 30, 13971403, doi:10.1175/WAF-D-15-0009.1.

    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., Wittmann P. A. , Serra E. A. , Tolman H. L. , Schauer J. , and Marchok T. , 2013: Evaluation of wave forecasts consistent with tropical cyclone warning center wind forecasts. Wea. Forecasting, 28, 287294, doi:10.1175/WAF-D-12-00060.1.

    • Search Google Scholar
    • Export Citation
  • Shea, J. D., and Gray W. M. , 1973: The hurricane’s inner core region. I. Symmetric and asymmetric structure. J. Atmos. Sci., 30, 15441564, doi:10.1175/1520-0469(1973)030<1544:THICRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., and Braswell W. D. , 2001: Atlantic tropical cyclone monitoring with AMSU-A: Estimation of maximum sustained wind speeds. Mon. Wea. Rev., 129, 15181532, doi:10.1175/1520-0493(2001)129<1518:ATCMWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Herndon D. C. , 2014: Update on the SATellite CONcensus (SATCON) algorithm for estimating TC intensity. Proc. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 30. [Available online at https://ams.confex.com/ams/31Hurr/webprogram/Paper243759.html.]

  • Velden, C. S., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223, doi:10.1175/BAMS-86-2-205.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, doi:10.1175/2008JAS2737.1.

    • Search Google Scholar
    • Export Citation
  • Weatherford, C. L., and Gray W. M. , 1988: Typhoon structure as revealed by aircraft reconnaissance. Part II: Structural variability. Mon. Wea. Rev., 116, 10441056, doi:10.1175/1520-0493(1988)116<1044:TSARBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weissman, D. E., Bourassa M. A. , and Tongue J. , 2002: Effects of rain rate and wind magnitude on SeaWinds scatterometer wind speed errors. J. Atmos. Oceanic Technol., 19, 738746, doi:10.1175/1520-0426(2002)019<0738:EORRAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences: An Introduction. 2nd ed. Academic Press, 627 pp.

  • Wong, M. L. M., and Chan J. C. L. , 2007: Modeling the effects of land–sea roughness contrasts on tropical cyclone winds. J. Atmos. Sci., 64, 32493264, doi:10.1175/JAS4027.1.

    • Search Google Scholar
    • Export Citation
  • Wood, K. M., Rodriguez-Herrera O. G. , Ritchie E. A. , Piñeros M. F. , Hernández I. A. , and Tyo J. S. , 2015: Tropical cyclogenesis detection in the North Pacific using the deviation angle variance technique. Wea. Forecasting, 30, 16631672, doi:10.1175/WAF-D-14-00113.1.

    • Search Google Scholar
    • Export Citation
  • Zeng, L., and Brown R. A. , 1998: Scatterometer observations at high wind speeds. J. Appl. Meteor., 37, 14121420, doi:10.1175/1520-0450(1998)037<1412:SOAHWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 709 202 16
PDF Downloads 547 152 31