The Brazilian Global Atmospheric Model (BAM): Performance for Tropical Rainfall Forecasting and Sensitivity to Convective Scheme and Horizontal Resolution

Silvio N. Figueroa Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil
Brazilian Research Network on Global Climate Change (Rede CLIMA), São José dos Campos, São Paulo, Brazil

Search for other papers by Silvio N. Figueroa in
Current site
Google Scholar
PubMed
Close
,
José P. Bonatti Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil

Search for other papers by José P. Bonatti in
Current site
Google Scholar
PubMed
Close
,
Paulo Y. Kubota Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil
Brazilian Research Network on Global Climate Change (Rede CLIMA), São José dos Campos, São Paulo, Brazil

Search for other papers by Paulo Y. Kubota in
Current site
Google Scholar
PubMed
Close
,
Georg A. Grell National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Georg A. Grell in
Current site
Google Scholar
PubMed
Close
,
Hugh Morrison National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Hugh Morrison in
Current site
Google Scholar
PubMed
Close
,
Saulo R. M. Barros Department of Applied Mathematics, University of São Paulo, São Paulo, Brazil

Search for other papers by Saulo R. M. Barros in
Current site
Google Scholar
PubMed
Close
,
Julio P. R. Fernandez Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil

Search for other papers by Julio P. R. Fernandez in
Current site
Google Scholar
PubMed
Close
,
Enver Ramirez Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil

Search for other papers by Enver Ramirez in
Current site
Google Scholar
PubMed
Close
,
Leo Siqueira Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida

Search for other papers by Leo Siqueira in
Current site
Google Scholar
PubMed
Close
,
Graziela Luzia Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil

Search for other papers by Graziela Luzia in
Current site
Google Scholar
PubMed
Close
,
Josiane Silva Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil

Search for other papers by Josiane Silva in
Current site
Google Scholar
PubMed
Close
,
Juliana R. Silva Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil

Search for other papers by Juliana R. Silva in
Current site
Google Scholar
PubMed
Close
,
Jayant Pendharkar Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil
Brazilian Research Network on Global Climate Change (Rede CLIMA), São José dos Campos, São Paulo, Brazil

Search for other papers by Jayant Pendharkar in
Current site
Google Scholar
PubMed
Close
,
Vinicius B. Capistrano Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil
Brazilian Research Network on Global Climate Change (Rede CLIMA), São José dos Campos, São Paulo, Brazil

Search for other papers by Vinicius B. Capistrano in
Current site
Google Scholar
PubMed
Close
,
Débora S. Alvim Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil
Brazilian Research Network on Global Climate Change (Rede CLIMA), São José dos Campos, São Paulo, Brazil

Search for other papers by Débora S. Alvim in
Current site
Google Scholar
PubMed
Close
,
Diego P. Enoré Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil

Search for other papers by Diego P. Enoré in
Current site
Google Scholar
PubMed
Close
,
Fábio L. R. Diniz Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil

Search for other papers by Fábio L. R. Diniz in
Current site
Google Scholar
PubMed
Close
,
Praki Satyamurti National Institute for Space Research, São José dos Campos, São Paulo, Brazil

Search for other papers by Praki Satyamurti in
Current site
Google Scholar
PubMed
Close
,
Iracema F. A. Cavalcanti Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil

Search for other papers by Iracema F. A. Cavalcanti in
Current site
Google Scholar
PubMed
Close
,
Paulo Nobre Center for Weather Forecasting and Climate Studies, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil
Brazilian Research Network on Global Climate Change (Rede CLIMA), São José dos Campos, São Paulo, Brazil

Search for other papers by Paulo Nobre in
Current site
Google Scholar
PubMed
Close
,
Henrique M. J. Barbosa Department of Physics, University of São Paulo, São Paulo, Brazil

Search for other papers by Henrique M. J. Barbosa in
Current site
Google Scholar
PubMed
Close
,
Celso L. Mendes National Institute for Space Research, São José dos Campos, São Paulo, Brazil

Search for other papers by Celso L. Mendes in
Current site
Google Scholar
PubMed
Close
, and
Jairo Panetta Technological Institute of Aeronautics (ITA), São José dos Campos, São Paulo, Brazil

Search for other papers by Jairo Panetta in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article describes the main features of the Brazilian Global Atmospheric Model (BAM), analyses of its performance for tropical rainfall forecasting, and its sensitivity to convective scheme and horizontal resolution. BAM is the new global atmospheric model of the Center for Weather Forecasting and Climate Research [Centro de Previsão de Tempo e Estudos Climáticos (CPTEC)], which includes a new dynamical core and state-of-the-art parameterization schemes. BAM’s dynamical core incorporates a monotonic two-time-level semi-Lagrangian scheme, which is carried out completely on the model grid for the tridimensional transport of moisture, microphysical prognostic variables, and tracers. The performance of the quantitative precipitation forecasts (QPFs) from two convective schemes, the Grell–Dévényi (GD) scheme and its modified version (GDM), and two different horizontal resolutions are evaluated against the daily TRMM Multisatellite Precipitation Analysis over different tropical regions. Three main results are 1) the QPF skill was improved substantially with GDM in comparison to GD; 2) the increase in the horizontal resolution without any ad hoc tuning improves the variance of precipitation over continents with complex orography, such as Africa and South America, whereas over oceans there are no significant differences; and 3) the systematic errors (dry or wet biases) remain virtually unchanged for 5-day forecasts. Despite improvements in the tropical precipitation forecasts, especially over southeastern Brazil, dry biases over the Amazon and La Plata remain in BAM. Improving the precipitation forecasts over these regions remains a challenge for the future development of the model to be used not only for numerical weather prediction over South America but also for global climate simulations.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Silvio N. Figueroa, CPTEC/INPE, Rod Presidente Dutra, km 40, Cachoeira Paulista, São Paulo, CEP 12.360-000, Brazil. E-mail: nilo.figueroa@inpe.br

Abstract

This article describes the main features of the Brazilian Global Atmospheric Model (BAM), analyses of its performance for tropical rainfall forecasting, and its sensitivity to convective scheme and horizontal resolution. BAM is the new global atmospheric model of the Center for Weather Forecasting and Climate Research [Centro de Previsão de Tempo e Estudos Climáticos (CPTEC)], which includes a new dynamical core and state-of-the-art parameterization schemes. BAM’s dynamical core incorporates a monotonic two-time-level semi-Lagrangian scheme, which is carried out completely on the model grid for the tridimensional transport of moisture, microphysical prognostic variables, and tracers. The performance of the quantitative precipitation forecasts (QPFs) from two convective schemes, the Grell–Dévényi (GD) scheme and its modified version (GDM), and two different horizontal resolutions are evaluated against the daily TRMM Multisatellite Precipitation Analysis over different tropical regions. Three main results are 1) the QPF skill was improved substantially with GDM in comparison to GD; 2) the increase in the horizontal resolution without any ad hoc tuning improves the variance of precipitation over continents with complex orography, such as Africa and South America, whereas over oceans there are no significant differences; and 3) the systematic errors (dry or wet biases) remain virtually unchanged for 5-day forecasts. Despite improvements in the tropical precipitation forecasts, especially over southeastern Brazil, dry biases over the Amazon and La Plata remain in BAM. Improving the precipitation forecasts over these regions remains a challenge for the future development of the model to be used not only for numerical weather prediction over South America but also for global climate simulations.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Silvio N. Figueroa, CPTEC/INPE, Rod Presidente Dutra, km 40, Cachoeira Paulista, São Paulo, CEP 12.360-000, Brazil. E-mail: nilo.figueroa@inpe.br
Save
  • Alpert, J. C., Kanamitsu M. , Caplan P. M. , Sela J. G. , White G. H. , and Kalnay E. , 1988: Mountain induced gravity wave drag parameterization in the NMC medium-range model. Preprints, Eighth Conf. on Numerical Weather Prediction, Baltimore, MD, Amer. Meteor. Soc., 726–733.

  • Arakawa, A., and Schubert W. H. , 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674701, doi:10.1175/1520-0469(1974)031<0674:IOACCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arraut, J. M., and Barbosa H. M. J. , 2009: Large-scale features associated with strong frontogenesis in equivalent potential temperature in the South American subtropics east of the Andes. Adv. Geosci., 22, 7378, doi:10.5194/adgeo-22-73-2009.

    • Search Google Scholar
    • Export Citation
  • Arraut, J. M., and Satyamurty P. , 2009: Precipitation and water vapor transport in the Southern Hemisphere with emphasis on the South American region. J. Appl. Meteor. Climatol., 48, 19021912, doi:10.1175/2009JAMC2030.1.

    • Search Google Scholar
    • Export Citation
  • Barbosa, H. M. J., Tarasova T. A. , and Cavalcanti I. F. A. , 2008: Impacts of a new solar radiation parameterization on the CPTEC AGCM climatological features. J. Appl. Meteor. Climatol., 47, 13771392, doi:10.1175/2007JAMC1760.1.

    • Search Google Scholar
    • Export Citation
  • Berbery, E. H., and Barros V. R. , 2002: The hydrologic cycle of the La Plata basin in South America. J. Hydrometeor., 3, 630645, doi:10.1175/1525-7541(2002)003<0630:THCOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boers, N., Bookhagen B. , Barbosa H. M. J. , Marwan N. , Kurths J. , and Marengo J. , 2014: Prediction of extreme floods in the eastern central Andes based on a complex network approach. Nat. Commun., 5, 5199, doi:10.1038/ncomms6199.

    • Search Google Scholar
    • Export Citation
  • Boers, N., Barbosa H. M. J. , Bookhagen B. , Marengo J. A. , Marwan N. , and Kurths J. , 2015: Propagation of strong rainfall events from southeastern South America to the central Andes. J. Climate, 28, 76417658, doi:10.1175/JCLI-D-15-0137.1.

    • Search Google Scholar
    • Export Citation
  • Brown, J. M., 1979: Mesoscale unsaturated downdrafts driven by rainfall evaporation: A numerical study. J. Atmos. Sci., 36, 313338, doi:10.1175/1520-0469(1979)036<0313:MUDDBR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cavalcanti, I. F. A., and Coauthors, 2002: Global climatological features in a simulation using the CPTEC–COLA AGCM. J. Climate, 15, 29652988, doi:10.1175/1520-0442(2002)015<2965:GCFIAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chaves, R. R., and Cavalcanti I. F. A. , 2001: Atmospheric circulation features associated with rainfall variability over southern Northeast Brazil. Mon. Wea. Rev., 129, 26142626, doi:10.1175/1520-0493(2001)129<2614:ACFAWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., Ebert E. E. , Walsh K. J. E. , and Davidson N. E. , 2013: Evaluation of TMPA 3B42 daily precipitation estimates of tropical cyclone rainfall over Australia. J. Geophys. Res. Atmos., 118, 11 96611 978, doi:10.1002/2013JD020319.

    • Search Google Scholar
    • Export Citation
  • Chou, M. D., and Suarez M. J. , 1999: A solar radiation parameterization for atmospheric studies. NASA Tech. Rep. NASA/TM-1999-10460, Vol. 15, 40 pp. [Available online at https://gmao.gsfc.nasa.gov/pubs/docs/Chou136.pdf.]

  • Cohen, J. C. P., Silva Dias M. A. F. , and Nobre C. A. , 1995: Environmental conditions associated with Amazonian squall lines: A case study. Mon. Wea. Rev., 123, 31633174, doi:10.1175/1520-0493(1995)123<3163:ECAWAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H., and Pires G. F. , 2010: Effects of Amazon and central Brazil deforestation scenarios on the duration of the dry season in the arc of deforestation. Int. J. Climatol., 30, 19701979, doi:10.1002/joc.2048.

    • Search Google Scholar
    • Export Citation
  • Costa, M. H., Yanagi S. N. M. , Oliveira P. J. , Ribeiro A. , and Rocha E. J. P. , 2007: Climate change in Amazonia caused by soybean cropland expansion, as compared to caused by pasture land expansion. Geophys. Res. Lett., 34, L07706, doi:10.1029/2007GL029271.

    • Search Google Scholar
    • Export Citation
  • Cunha, A. P. M. A., Avalá R. C. S. , Sampaio G. , Shimizu M. H. , and Costa M. H. , 2013: Calibration and validation of the Integrated Biosphere Simulator (IBIS) for a Brazilian semiarid region. J. Appl. Meteor. Climatol., 52, 27532770, doi:10.1175/JAMC-D-12-0190.1.

    • Search Google Scholar
    • Export Citation
  • Cunningham, C., Bonatti J. P. , and Ferreira M. , 2014: Assessing improved CPTEC probabilistic forecasts on medium-range timescale. Meteor. Appl., 22, 378384, doi:10.1002/met.1464.

    • Search Google Scholar
    • Export Citation
  • De Almeida, R. F., Nobre P. , Haarsma R. J. , and Campos E. J. D. , 2007: Negative ocean-atmosphere feedback in the South Atlantic Convergence Zone. Geophys. Res. Lett., 34, L18809, doi:10.1029/2007GL030401.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • de Oliveira Vieira, S., Satyamurty P. , and Andreoli R. V. , 2013: On the South Atlantic Convergence Zone affecting southern Amazonia in austral summer. Atmos. Sci. Lett., 14, 16, doi:10.1002/asl2.401.

    • Search Google Scholar
    • Export Citation
  • Figueroa, S. N., Satyamurty P. , and Silva Dias P. L. , 1995: Simulations of the summer circulation over the South American region with an eta coordinate model. J. Atmos. Sci., 52, 15731584, doi:10.1175/1520-0469(1995)052<1573:SOTSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Figueroa, S. N., Tarasova T. , Barbosa H. M. J. , Bonatti J. P. , and Silvia Dias P. L. , 2006: The impact of cumulus and radiation parameterization schemes on Southern Hemisphere summer climate simulated by CPTEC atmospheric general circulation model. Proc. Eighth Int. Conf. on Southern Hemisphere Meteorology and Oceanography, Foz do Iguaçu, Brazil, INPE, 10371040. [Available online at http://apcling.org/programs/Foz2006SilvioEtAl.pdf.]

  • Foley, J. A., Prentice I. C. , Ramankutty N. , Levis S. , Pollard D. , Sitch S. , and Haxeltine A. , 1996: An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles, 10, 603628, doi:10.1029/96GB02692.

    • Search Google Scholar
    • Export Citation
  • Fritsch, J. M., and Carbone R. E. , 2004: Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy. Bull. Amer. Meteor. Soc., 85, 955965, doi:10.1175/BAMS-85-7-955.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., and Wallace J. M. , 1998: Summertime incursions of midlatitude air into subtropical and tropical South America. Mon. Wea. Rev., 126, 27132733, doi:10.1175/1520-0493(1998)126<2713:SIOMAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G., 1993: Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Wea. Rev., 121, 764787, doi:10.1175/1520-0493(1993)121<0764:PEOAUB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grell, G., and Dévényi D. , 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29, doi:10.1029/2002GL015311.

    • Search Google Scholar
    • Export Citation
  • Grose, M. R., and Coauthors, 2014: Assessment of the CMIP5 global climate model simulations of the western tropical Pacific climate system and comparison to CMIP3. Int. J. Climatol., 34, 33823399, doi:10.1002/joc.3916.

    • Search Google Scholar
    • Export Citation
  • Gulizia, C., and Camilloni I. , 2014: Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. Int. J. Climatol., 35, 583595, doi:10.1002/joc.4005.

    • Search Google Scholar
    • Export Citation
  • Hirota, N., and Takayabu Y. N. , 2013: Reproducibility of precipitation distribution over the tropical oceans in CMIP5 multi-climate models compared to CMIP3. Climate Dyn., 41, 29092920, doi:10.1007/s00382-013-1839-0.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Gu G. , 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., Adler R. F. , Bolvin D. T. , and Nelkin E. J. , 2010: The TRMM Multi-satellite Precipitation Analysis (TMPA). Satellite Applications for Surface Hydrology, M. Gebremichael and F. Hossain, Eds., Springer, 3–22, doi:10.1007/978-90-481-2915-7_1.

  • Iacono, M., Delamere J. , Mlawer E. , Shephard M. , Clough S. , and Collins W. , 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • INPE/CPTEC, 2012: Climanálise: Boletim de Monitoramento e Análise Climática. Vol. 27, No. 12, INPE/CPTEC, 42 pp. [Available online at http://climanalise.cptec.inpe.br/~rclimanl/boletim/pdf/pdf12/dez12.pdf.]

  • INPE/CPTEC, 2013a: Climanálise: Boletim de Monitoramento e Análise Climática. Vol. 28, No. 1, CPTEC/INPE, 44 pp. [Available online at http://climanalise.cptec.inpe.br/~rclimanl/boletim/pdf/pdf13/jan13.pdf.]

  • INPE/CPTEC, 2013b: Climanálise: Boletim de Monitoramento e Análise Climática. Vol. 28, No. 2, CPTEC/INPE, 45 pp. [Available online at http://climanalise.cptec.inpe.br/~rclimanl/boletim/pdf/pdf13/fev13.pdf.]

  • Jones, C., and Carvalho L. M. V. , 2013: Climate change in the South American monsoon system: Present climate and CMIP5 projections. J. Climate, 26, 66606678, doi:10.1175/JCLI-D-12-00412.1.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Fritsch J. M. , 1992: The role of the convective “trigger function” in numerical forecasts of mesoscale convective systems. Meteor. Atmos. Phys., 49, 93106, doi:10.1007/BF01025402.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M. F., and Randall D. A. , 2003: Cloud-resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607625, doi:10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kitade, T., 1983: Nonlinear normal mode initialization with physics. Mon. Wea. Rev., 111, 21942213, doi:10.1175/1520-0493(1983)111<2194:NNMIWP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., Low-Nam S. , and Pasch R. , 1983: Cumulus parameterizations and rainfall rates II. Mon. Wea. Rev., 111, 815828, doi:10.1175/1520-0493(1983)111<0815:CPARRI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kubota, P. Y., 2012: Variability of storage energy in the soil-canopy system and its impact on the definition of precipitation standard in South America (in Portuguese with abstract in English). Ph.D. thesis, Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, Brazil, 285 pp.

  • Kucharik, C. J., and Coauthors, 2000: Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles, 14, 795826, doi:10.1029/1999GB001138.

    • Search Google Scholar
    • Export Citation
  • Lima, K. C., Satyamurty P. , and Fernández J. P. R. , 2010: Large-scale atmospheric conditions associated with heavy rainfall episodes in Southeast Brazil. Theor. Appl. Climatol., 101, 121135, doi:10.1007/s00704-009-0207-9.

    • Search Google Scholar
    • Export Citation
  • Ma, H.-Y., and Coauthors, 2014: On the correspondence between mean forecast errors and climate errors in CMIP5 models. J. Climate, 27, 17811798, doi:10.1175/JCLI-D-13-00474.1.

    • Search Google Scholar
    • Export Citation
  • Machenhauer, B., 1977: On the dynamics of gravity oscillations in a shallow water model with applications to normal mode initialization. Contrib. Atmos. Phys., 50, 253271.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., Johnson D. W. , and Spice A. , 1994: The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci., 51, 18231842, doi:10.1175/1520-0469(1994)051<1823:TMAPOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mehran, A., Agha Kouchak A. , and Phillips T. J. , 2014: Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J. Geophys. Res. Atmos., 119, 16951707, doi:10.1002/2013JD021152.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and Yamada T. , 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., 2008: Bias adjusted precipitation threat scores. Adv. Geosci., 16, 137142, doi:10.5194/adgeo-16-137-2008.

  • Mesinger, F., and Black T. L. , 1992: On the impact on forecast accuracy of the step-mountain (eta) vs. sigma coordinate. Meteor. Atmos. Phys., 50, 4760, doi:10.1007/BF01025504.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Morrison, G., Curry J. A. , and Khvorostyanov V. I. , 2005: A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description. J. Atmos. Sci., 62, 16651677, doi:10.1175/JAS3446.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, G., Thompson G. , and Tatarskii V. , 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137, 9911007, doi:10.1175/2008MWR2556.1.

    • Search Google Scholar
    • Export Citation
  • Moura, A. D., and Shukla J. , 1981: On the dynamics of droughts in Northeast Brazil: Observations, theory and numerical experiments with a general circulation model. J. Atmos. Sci., 38, 26532675, doi:10.1175/1520-0469(1981)038<2653:OTDODI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murphy, A. H., 1988: Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Wea. Rev., 116, 24172424, doi:10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2012: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 274 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • Nieto Ferreira, R., and Chao W. C. , 2013: 2013: Aqua-planet simulations of the formation of South Atlantic convergence zone. Int. J. Climatol., 33, 615628, doi:10.1002/joc.3457.

    • Search Google Scholar
    • Export Citation
  • Nobre, P., and Shukla J. , 1996: Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Climate, 9, 24642479, doi:10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nobre, P., Malagutti M. , Urbano D. F. , de Almeida R. A. F. , and Giarolla E. , 2009: Amazon deforestation and climate change in a coupled model simulation. J. Climate, 22, 56865697, doi:10.1175/2009JCLI2757.1.

    • Search Google Scholar
    • Export Citation
  • Nobre, P., and Coauthors, 2013: Climate simulation and change in the Brazilian climate model. J. Climate, 26, 67166732, doi:10.1175/JCLI-D-12-00580.1.

    • Search Google Scholar
    • Export Citation
  • Nogués-Paegle, J., and Mo K. C. , 1997: Alternating wet and dry conditions over South America during summer. Mon. Wea. Rev., 125, 279291, doi:10.1175/1520-0493(1997)125<0279:AWADCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ochoa, A., Pineda L. , Willems P. , and Crespo P. , 2014: Evaluation of TRMM 3B42 (TMPA) precipitation estimates and WRF retrospective precipitation simulation over the Pacific-Andean basin into Ecuador and Peru. Hydrol. Earth Syst. Sci., 11, 411449, doi:10.5194/hessd-11-411-2014.

    • Search Google Scholar
    • Export Citation
  • Panetta, J., Barros S. R. , Bonatti J. P. , Tomita S. S. , and Kubota P. Y. , 2007: Computational cost of CPTEC AGCM. Proc. 12th Workshop on Use of High Performance Computing in Meteorology, Reading, United Kingdom, ECMWF, 65–83.

  • Park, S., and Bretherton C. S. , 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., Barker H. W. , and Morcrette J.-J. , 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J. Geophys. Res., 108, 4376, doi:10.1029/2002JD003322.

    • Search Google Scholar
    • Export Citation
  • Rasch, P. J., and Kristjansson J. E. , 1998: A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Climate, 11, 15871614, doi:10.1175/1520-0442(1998)011<1587:ACOTCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., and Houze R. A. Jr., 2016: Convective initiation near the Andes in subtropical South America. Mon. Wea. Rev., 144, 23512374, doi:10.1175/MWR-D-15-0058.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., Chaplin M. M. , Zuluaga M. D. , and Houze R. A. Jr., 2016: Contribution of extreme convective storms to rainfall in South America. J. Hydrometeor., 17, 353367, doi:10.1175/JHM-D-15-0067.1.

    • Search Google Scholar
    • Export Citation
  • Reisner, J., Rasmussen R. M. , and Bruintjes R. T. , 1998: Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quart. J. Roy. Meteor. Soc., 124, 10711107, doi:10.1002/qj.49712454804.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U., and Houze R. A. Jr., 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, doi:10.1175/2010JCLI3465.1.

    • Search Google Scholar
    • Export Citation
  • Rozante, J. R., and Cavalcanti I. F. A. , 2008: Regional Eta model experiments: SALLJEX and MCS development. J. Geophys. Res., 113, D17106, doi:10.1029/2007JD009566.

    • Search Google Scholar
    • Export Citation
  • Salio, P., Nicolini M. , and Zipser E. J. , 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, doi:10.1175/MWR3305.1.

    • Search Google Scholar
    • Export Citation
  • Sato, N., Sellers P. J. , Randall D. A. , Schneider E. K. , Shukla J. , Kinter J. L. III, Hou Y. T. , and Albertazzi E. , 1989: Effects of implementing the Simple Biosphere Model in a general circulation model. J. Atmos. Sci., 46, 27572782, doi:10.1175/1520-0469(1989)046<2757:EOITSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Siqueira, J. R., and Marques V. S. , 2010: Structural characteristics of mesoscale convective systems over southeast Brazil related to cold frontal and non-frontal incursions. Aust. Meteor. Oceanogr. J., 60, 4962.

    • Search Google Scholar
    • Export Citation
  • Stern, H., 2008: The accuracy of forecasts for Melbourne, Australia. Meteor. Appl., 15, 6571, doi:10.1002/met.67.

  • Stern, H., and Davidson N. E. , 2015: Trends in the skill of weather prediction at lead times of 1–14 days. Quart. J. Roy. Meteor. Soc., 141, 27262736, doi:10.1002/qj.2559.

    • Search Google Scholar
    • Export Citation
  • Tarasova, T., and Fomin B. , 2000: Solar radiation absorption due to water vapor: Advanced broadband parameterizations. J. Appl. Meteor., 39, 19471951, doi:10.1175/1520-0450(2000)039<1947:SRADTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., 2001: Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 71837192, doi:10.1029/2000JD900719.

    • Search Google Scholar
    • Export Citation
  • Tiedtke, M., 1983: The sensitivity of the time-mean large-scale flow to cumulus convection in the ECMWF model. Proc. Workshop on Convection in Large-Scale Models, Reading, United Kingdom, ECMWF, 297–316.

  • Webster, S., Brown A. R. , Cameron D. R. , and Jones C. P. , 2003: Improvements to the representation of orography in the Met Office United Model. Quart. J. Roy. Meteor. Soc., 129, 19892010, doi:10.1256/qj.02.133.

    • Search Google Scholar
    • Export Citation
  • WMO, 2009: Recommendations for the verification and intercomparison of QPFs and PQPFs from operational NWP models: Revision 2. WMO/TD-No.1485, WWRP 2009-1, 37 pp. [Available online at http://www.wmo.int/pages/prog/arep/wwrp/new/documents/WWRP2009-1_web_CD.pdf.]

  • Xie, S., Ma H.-Y. , Boyle J. S. , Klein S. A. , and Zhang Y. , 2012: On the correspondence between short- and long-time-scale systematic errors in CAM4/CAM5 for the Year of Tropical Convection. J. Climate, 25, 79377955, doi:10.1175/JCLI-D-12-00134.1.

    • Search Google Scholar
    • Export Citation
  • Xue, Y., Sellers P. J. , Kinter J. L. , and Shukla J. , 1991: A simplified biosphere model for global climate studies. J. Climate, 4, 345364, doi:10.1175/1520-0442(1991)004<0345:ASBMFG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yin, L., Fu F. , Shevliakova E. , and Dickinson R. E. , 2013: How well can CMIP5 simulate precipitation and its controlling processes over tropical South America? Climate Dyn., 41, 31273143, doi:10.1007/s00382-012-1582-y.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., Zhao M. , and Dickinson R. E. , 1998: Intercomparison of bulk aerodynamical algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Climate, 11, 26282644, doi:10.1175/1520-0442(1998)011<2628:IOBAAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2002: Convective quasi-equilibrium in midlatitude continental environment and its effect on convective parameterization. J. Geophys. Res., 107, doi:10.1029/2001JD001005.

    • Search Google Scholar
    • Export Citation
  • Zhang, G. J., 2009: Effects of entrainment on convective available potential energy and closure assumptions in convection parameterization. J. Geophys. Res., 114, D07109, doi:10.1029/2008JD010976.

    • Search Google Scholar
    • Export Citation
  • Zhu, H., Wheeler M. C. , Sobel A. H. , and Hudson D. , 2014: Seamless precipitation prediction skill in the tropics and extratropics from a global model. Mon. Wea. Rev., 142, 15561569, doi:10.1175/MWR-D-13-00222.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2025 404 45
PDF Downloads 1420 236 17