The Impact of Vertical Resolution on Fog Forecasting in the Kilometric-Scale Model AROME: A Case Study and Statistics

A. Philip CNRM UMR3589, Météo-France/CNRS, Toulouse, France

Search for other papers by A. Philip in
Current site
Google Scholar
PubMed
Close
,
T. Bergot CNRM UMR3589, Météo-France/CNRS, Toulouse, France

Search for other papers by T. Bergot in
Current site
Google Scholar
PubMed
Close
,
Y. Bouteloup CNRM UMR3589, Météo-France/CNRS, Toulouse, France

Search for other papers by Y. Bouteloup in
Current site
Google Scholar
PubMed
Close
, and
F. Bouyssel CNRM UMR3589, Météo-France/CNRS, Toulouse, France

Search for other papers by F. Bouyssel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The impact of vertical resolution on numerical fog forecasting is studied in detail for a specific case and evaluated statistically over a winter season. Three vertical resolutions are tested with the kilometric-scale Applications of Research to Operations at Mesoscale (AROME) numerical weather prediction model over Paris Charles de Gaulle Airport (Paris-CDG) in Paris, France. For the case studied, the vertical resolution has a strong impact on fog onset. The nocturnal jet and the turbulence created by wind shear at the top of the nocturnal boundary layer are more pronounced with a finer vertical resolution, and the turbulence close to the ground is also stronger with high vertical resolution. Local circulations created by the terrain induce different simulated processes during the fog onset. The fog is simulated as advection–radiation fog in the finer vertical resolution run and as radiation fog in the others. The vertical resolution has little impact on the mature and dissipation phases. A statistical study over a winter season confirms the results obtained in the fog case study. High vertical resolution simulates earlier onset, as well as longer-lasting and more spatially heterogeneous fogs. The high vertical resolution configuration simulates more fog events than are found at low resolution (LR); these fog events generally form north of Paris-CDG. No observations are available in this area, leading to many simulated but no observed fog events in the fine-resolution runs. The ceiling of low clouds is not well simulated by the numerical model no matter what vertical resolution is used.

Corresponding author address: Alexandre Philip, Météo-France, CNRM/GMAP, 42 Av. G. Coriolis, 31057 Toulouse CEDEX, France. E-mail: alexandre.philip@meteo.fr

Abstract

The impact of vertical resolution on numerical fog forecasting is studied in detail for a specific case and evaluated statistically over a winter season. Three vertical resolutions are tested with the kilometric-scale Applications of Research to Operations at Mesoscale (AROME) numerical weather prediction model over Paris Charles de Gaulle Airport (Paris-CDG) in Paris, France. For the case studied, the vertical resolution has a strong impact on fog onset. The nocturnal jet and the turbulence created by wind shear at the top of the nocturnal boundary layer are more pronounced with a finer vertical resolution, and the turbulence close to the ground is also stronger with high vertical resolution. Local circulations created by the terrain induce different simulated processes during the fog onset. The fog is simulated as advection–radiation fog in the finer vertical resolution run and as radiation fog in the others. The vertical resolution has little impact on the mature and dissipation phases. A statistical study over a winter season confirms the results obtained in the fog case study. High vertical resolution simulates earlier onset, as well as longer-lasting and more spatially heterogeneous fogs. The high vertical resolution configuration simulates more fog events than are found at low resolution (LR); these fog events generally form north of Paris-CDG. No observations are available in this area, leading to many simulated but no observed fog events in the fine-resolution runs. The ceiling of low clouds is not well simulated by the numerical model no matter what vertical resolution is used.

Corresponding author address: Alexandre Philip, Météo-France, CNRM/GMAP, 42 Av. G. Coriolis, 31057 Toulouse CEDEX, France. E-mail: alexandre.philip@meteo.fr
Save
  • Bari, D., Bergot T. , and El Khlifi M. , 2015: Numerical study of a coastal fog event over Casablanca, Morocco. Quart. J. Roy. Meteor. Soc., 141, 18941905, doi:10.1002/qj.2494.

    • Search Google Scholar
    • Export Citation
  • Bergot, T., 2007: Quality assessment of the Cobel-Isba numerical forecast system of fog and low clouds. Pure Appl. Geophys., 164, 12651282, doi:10.1007/s00024-007-0218-3.

    • Search Google Scholar
    • Export Citation
  • Bergot, T., 2013: Small-scale structure of radiation fog: A large-eddy simulation study. Quart. J. Roy. Meteor. Soc., 139, 10991112, doi:10.1002/qj.2051.

    • Search Google Scholar
    • Export Citation
  • Bergot, T., and Guedalia D. , 1994: Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Mon. Wea. Rev., 122, 12181230, doi:10.1175/1520-0493(1994)122<1218:NFORFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bergot, T., Carrer D. , Noilhan J. , and Bougeault P. , 2005: Improved site-specific numerical prediction of fog and low clouds: A feasibility study. Wea. Forecasting, 20, 627646, doi:10.1175/WAF873.1.

    • Search Google Scholar
    • Export Citation
  • Bergot, T., Escobar J. , and Masson V. , 2015: Effect of small-scale surface heterogeneities and buildings on radiation fog: Large-eddy simulation study at Paris–Charles de Gaulle airport. Quart. J. Roy. Meteor. Soc., 141, 285298, doi:10.1002/qj.2358.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and Lacarrere P. , 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boutle, I., Finnenkoetter A. , Lock A. , and Wells H. , 2016: The London model: Forecasting fog at 333 m resolution. Quart. J. Roy. Meteor. Soc., 142, 360371, doi:10.1002/qj.2656.

    • Search Google Scholar
    • Export Citation
  • Charnock, H., 1955: Wind stress over a water surface. Quart. J. Roy. Meteor. Soc., 81, 639640, doi:10.1002/qj.49708135027.

  • Cuxart, J., and Jiménez M. , 2012: Deep radiation fog in a wide closed valley: Study by numerical modeling and remote sensing. Pure Appl. Geophys., 169, 911926, doi:10.1007/s00024-011-0365-4.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., Bougeault P. , and Redelsperger J.-L. , 2000: A turbulence scheme allowing for mesoscale and large-eddy simulations. Quart. J. Roy. Meteor. Soc., 126, 130, doi:10.1002/qj.49712656202.

    • Search Google Scholar
    • Export Citation
  • Durkee, P., and Coauthors, 2000: The impact of ship-produced aerosols on the microstructure and albedo of warm marine stratocumulus clouds: A test of MAST hypotheses 1i and 1ii. J. Atmos. Sci., 57, 25542569, doi:10.1175/1520-0469(2000)057<2554:TIOSPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fouquart, Y., and Bonnel B. , 1980: Computations of solar heating of the earth’s atmosphere—A new parameterization. Beitr. Phys. Atmos., 53, 3562.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., Müller M. , and Boybeyi Z. , 2006: A new visibility parameterization for warm-fog applications in numerical weather prediction models. J. Appl. Meteor. Climatol., 45, 14691480, doi:10.1175/JAM2423.1.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2007: Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys., 164, 11211159, doi:10.1007/s00024-007-0211-x.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A., de Bruijn E. , and Pan H. , 1990: A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev., 118, 15611575, doi:10.1175/1520-0493(1990)118<1561:AHRAMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kunkel, B. A., 1984: Parameterization of droplet terminal velocity and extinction coefficient in fog models. J. Climate Appl. Meteor., 23, 3441, doi:10.1175/1520-0450(1984)023<0034:PODTVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lafore, J. P., and Coauthors, 1998: The Meso-NH atmospheric simulation system. Part I: Adiabatic formulation and control simulations. Ann. Geophys., 16, 90109, doi:10.1007/s00585-997-0090-6.

    • Search Google Scholar
    • Export Citation
  • Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357397, doi:10.1023/A:1002463829265.

    • Search Google Scholar
    • Export Citation
  • Masson, V., and Seity Y. , 2009: Including atmospheric layers in vegetation and urban offline surface schemes. J. Appl. Meteor. Climatol., 48, 13771397, doi:10.1175/2009JAMC1866.1.

    • Search Google Scholar
    • Export Citation
  • Masson, V., and Coauthors, 2013: The SURFEXv7. 2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci. Model Dev., 6, 929960, doi:10.5194/gmd-6-929-2013.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., Taubman S. J. , Brown P. D. , Iacono M. J. , and Clough S. A. , 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Musson-Genon, L., 1987: Numerical simulation of a fog event with a one-dimensional boundary layer model. Mon. Wea. Rev., 115, 592607, doi:10.1175/1520-0493(1987)115<0592:NSOAFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., 2000: Large-eddy simulation of radiation fog. Bound.-Layer Meteor., 94, 461493, doi:10.1023/A:1002490423389.

  • Noilhan, J., and Planton S. , 1989: A simple parameterization of land surface processes for meteorological models. Mon. Wea. Rev., 117, 536549, doi:10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pergaud, J., Masson V. , Malardel S. , and Couvreux F. , 2009: A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Bound.-Layer Meteor., 132, 83106, doi:10.1007/s10546-009-9388-0.

    • Search Google Scholar
    • Export Citation
  • Pinty, J., and Jabouille P. , 1998: A mixed-phase cloud parameterization for use in mesoscale non hydrostatic model: Simulations of a squall line and of orographic precipitations. Preprints, Conf. on Cloud Physics, Everett, WA, Amer. Meteor. Soc., 217–220.

  • Roquelaure, S., Tardif R. , Remy S. , and Bergot T. , 2009: Skill of a ceiling and visibility Local Ensemble Prediction System (LEPS) according to fog-type prediction at Paris-Charles de Gaulle Airport. Wea. Forecasting, 24, 15111523, doi:10.1175/2009WAF2222213.1.

    • Search Google Scholar
    • Export Citation
  • Seity, Y., Brousseau P. , Malardel S. , Hello G. , Bénard P. , Bouttier F. , Lac C. , and Masson V. , 2011: The AROME-France convective-scale operational model. Mon. Wea. Rev., 139, 976991, doi:10.1175/2010MWR3425.1.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., Ronda R. J. , and Holtslag A. A. M. , 2015: The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Bound.-Layer Meteor., 154, 265289, doi:10.1007/s10546-014-9973-8.

    • Search Google Scholar
    • Export Citation
  • Tardif, R., 2007: The impact of vertical resolution in the explicit numerical forecasting of radiation fog: A case study. Pure Appl. Geophys., 164, 12211240, doi:10.1007/s00024-007-0216-5.

    • Search Google Scholar
    • Export Citation
  • Tardif, R., and Rasmussen R. M. , 2007: Event-based climatology and typology of fog in the New York City region. J. Appl. Meteor. Climatol., 46, 11411168, doi:10.1175/JAM2516.1.

    • Search Google Scholar
    • Export Citation
  • Tudor, M., 2010: Impact of horizontal diffusion, radiation and cloudiness parameterization schemes on fog forecasting in valleys. Meteor. Atmos. Phys., 108, 5770, doi:10.1007/s00703-010-0084-x.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, doi:10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Van der Velde, I., Steeneveld G. , Wichers Schreur B. , and Holtslag A. , 2010: Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon. Wea. Rev., 138, 42374253, doi:10.1175/2010MWR3427.1.

    • Search Google Scholar
    • Export Citation
  • Warner, J., and Twomey S. , 1967: The production of cloud nuclei by cane fires and the effect on cloud droplet concentration. J. Atmos. Sci., 24, 704706, doi:10.1175/1520-0469(1967)024<0704:TPOCNB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 590 159 13
PDF Downloads 445 96 15