Synoptic and Mesoscale Environment of Convection during the North American Monsoon across Central and Southern Arizona

Lee B. Carlaw National Weather Service Forecast Office, Tucson, Arizona

Search for other papers by Lee B. Carlaw in
Current site
Google Scholar
PubMed
Close
,
Ariel E. Cohen NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Ariel E. Cohen in
Current site
Google Scholar
PubMed
Close
, and
Jaret W. Rogers NOAA/NWS/NCEP/Storm Prediction Center, Norman, Oklahoma

Search for other papers by Jaret W. Rogers in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper comprehensively analyzes the synoptic and mesoscale environment associated with North American monsoon–related thunderstorms affecting central and southern Arizona. Analyses of thunderstorm environments are presented using reanalysis data, severe thunderstorm reports, and cloud-to-ground lightning information from 2003 to 2013, which serves as a springboard for lightning-prediction models provided in a companion paper. Spatial and temporal analyses of lightning strikes indicate thunderstorm frequencies maximize between 2100 and 0000 UTC, when the greatest frequencies are concentrated over higher terrain. Severe thunderstorm reports typically occur later in the day (between 2300 and 0100 UTC), while reports are maximized in the Tucson and Phoenix metropolitan areas. Composite analyses of the synoptic-scale patterns associated with severe thunderstorm days and nonthunderstorm days during the summer using the North American Regional Reanalysis dataset are presented. Severe thunderstorm cases tend to be associated with a stronger midlevel anticyclone and deep-layer moisture over portions of the southwestern United States. By September, severe weather patterns tend to associate with a midlevel trough along the Pacific coast. Specific parameters associated with severe thunderstorms are analyzed across the Tucson and Phoenix areas, where severe weather reporting is more consistent. Greater convective available potential energy, low-level lapse rates, and downdraft convective available potential energy are associated with severe thunderstorm (especially severe wind) environments compared to those with nonsevere thunderstorms, while stronger effective bulk wind differences (at least 15–20 kt, where 1 kt = 0.51 m s−1) can be used to distinguish severe hail environments.

Current affiliation: National Weather Service Forecast Office, Fort Worth, Texas.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Lee Carlaw, lee.carlaw@noaa.gov

Abstract

This paper comprehensively analyzes the synoptic and mesoscale environment associated with North American monsoon–related thunderstorms affecting central and southern Arizona. Analyses of thunderstorm environments are presented using reanalysis data, severe thunderstorm reports, and cloud-to-ground lightning information from 2003 to 2013, which serves as a springboard for lightning-prediction models provided in a companion paper. Spatial and temporal analyses of lightning strikes indicate thunderstorm frequencies maximize between 2100 and 0000 UTC, when the greatest frequencies are concentrated over higher terrain. Severe thunderstorm reports typically occur later in the day (between 2300 and 0100 UTC), while reports are maximized in the Tucson and Phoenix metropolitan areas. Composite analyses of the synoptic-scale patterns associated with severe thunderstorm days and nonthunderstorm days during the summer using the North American Regional Reanalysis dataset are presented. Severe thunderstorm cases tend to be associated with a stronger midlevel anticyclone and deep-layer moisture over portions of the southwestern United States. By September, severe weather patterns tend to associate with a midlevel trough along the Pacific coast. Specific parameters associated with severe thunderstorms are analyzed across the Tucson and Phoenix areas, where severe weather reporting is more consistent. Greater convective available potential energy, low-level lapse rates, and downdraft convective available potential energy are associated with severe thunderstorm (especially severe wind) environments compared to those with nonsevere thunderstorms, while stronger effective bulk wind differences (at least 15–20 kt, where 1 kt = 0.51 m s−1) can be used to distinguish severe hail environments.

Current affiliation: National Weather Service Forecast Office, Fort Worth, Texas.

For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Lee Carlaw, lee.carlaw@noaa.gov
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bossert, J. E., and W. R. Cotton, 1994: Regional-scale flows in mountainous terrain. Part I: A numerical and observational comparison. Mon. Wea. Rev., 122, 14491471, doi:10.1175/1520-0493(1994)122<1449:RSFIMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bothwell, P. D., J. A. Hart, and R. L. Thompson, 2002: An integrated three-dimensional objective analysis scheme in use at the Storm Prediction Center. Preprints, 21st Conf. on Severe Local Storms/19th Conf. on Weather Analysis and Forecasting/15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., J117–J120. [Available online at https://ams.confex.com/ams/pdfpapers/47482.pdf.]

  • Bothwell, P. D., B. T. Smith, R. L. Thompson, A. R. Dean, and J. S. Kain, 2014: Severe weather parameter reanalysis project at the Storm Prediction Center. Preprints, 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 18.2. [Available online at https://ams.confex.com/ams/27SLS/webprogram/Paper255652.html.]

  • Bryson, R. A., and W. P. Lowry, 1955: The synoptic climatology of the Arizona summer precipitation singularity. Bull. Amer. Meteor. Soc., 36, 329339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., 1986: Synoptic-dynamic character of ‘bursts’ and ‘breaks’ in the south-west U.S. summer precipitation singularity. J. Climatol., 6, 605623, doi:10.1002/joc.3370060604.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., and M. J. Murphy, 2009: An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN. IEEE Trans. Electromagn. Compat., 51, 499518, doi:10.1109/TEMC.2009.2023450.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doran, J. C., and S. Zhong, 1994: Regional drainage winds in the Pacific Northwest. Mon. Wea. Rev., 122, 11581167, doi:10.1175/1520-0493(1994)122<1158:RDFITP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, J. T. Schaefer, and D. W. McCann, 1982: Thermodynamic analysis procedures at the National Severe Storms Forecast Center. Preprints, Ninth Conf. on Weather Forecasting and Analysis, Seattle, WA, Amer. Meteor. Soc., 304–309.

  • Douglas, M. W., R. A. Maddox, J. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6, 16651677, doi:10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilmore, M. S., and L. J. Wicker, 1998: The influence of midtropospheric dryness on supercell morphology and evolution. Mon. Wea. Rev., 126, 943958, doi:10.1175/1520-0493(1998)126<0943:TIOMDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glueck, J. R., 1997: Climate of Tucson, Arizona. NOAA Tech. Memo. NWS WR-249, 121 pp. [Available online at https://www.weather.gov/media/wrh/online_publications/TMs/TM-249.pdf.]

  • Green, C. R., and W. S. Sellers, 1964: Arizona Climate. University of Arizona Press, 503 pp.

  • Hales, J. E., Jr., 1974: Southwestern United States summer monsoon source—Gulf of Mexico or Pacific Ocean? J. Appl. Meteor., 13, 331342, doi:10.1175/1520-0450(1974)013<0331:SUSSMS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hales, J. E., Jr., 1977: On the relationship of convective cooling to nocturnal thunderstorms at Phoenix. Mon. Wea. Rev., 105, 16091613, doi:10.1175/1520-0493(1977)105<1609:OTROCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, J. A., and W. D. Korotky, 1991: The SHARP workstation v1.50: User’s guide. NOAA/NWS, 30 pp.

  • Johns, R. H., and C. A. Doswell III, 1992: Severe local storms forecasting. Wea. Forecasting, 7, 588612, doi:10.1175/1520-0434(1992)007<0588:SLSF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • King, T. S., and R. C. Balling Jr., 1994: Diurnal variations in Arizona monsoon lightning data. Mon. Wea. Rev., 122, 16591664, doi:10.1175/1520-0493(1994)122<1659:DVIAML>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lopez, R. E., and R. L. Holle, 1986: Diurnal and spatial variability of lightning activity in northeastern Colorado and central Florida during the summer. Mon. Wea. Rev., 114, 12881312, doi:10.1175/1520-0493(1986)114<1288:DASVOL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., M. Douglas, and K. W. Howard, 1991: Mesoscale precipitation systems over southwestern North America: A warm season overview. Preprints, Int. Conf. on Mesoscale Meteorology and TAMEX, Taipei, Taiwan, Amer. Meteor. Soc. and NCAR, 393–402.

  • Maddox, R. A., D. McCollum, and K. Howard, 1995: Large-scale patterns associated with severe summertime thunderstorms over central Arizona. Wea. Forecasting, 10, 763778, doi:10.1175/1520-0434(1995)010<0763:LSPAWS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCollum, D. M., 1993: Synoptic-scale patterns associated with severe thunderstorms in Arizona during the summer monsoon. M.S. thesis, School of Meteorology, University of Oklahoma, 166 pp.

  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

  • Rasmusson, E. M., 1967: Atmospheric water vapor transport and the water balance of North America: Part I. Characteristics of the water vapor flux field. Mon. Wea. Rev., 95, 403426, doi:10.1175/1520-0493(1967)095<0403:AWVTAT>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmusson, E. M., 1971: Diurnal variation of summertime thunderstorm activity over the United States. Tech. Note 71-4, USAF Environmental Technical Applications Center, 13 pp.

  • Reap, R., 1986: Evaluation of cloud-to-ground lightning from the western United States for the 1983–84 summer seasons. J. Appl. Meteor., 25, 785799, doi:10.1175/1520-0450(1986)025<0785:EOCTGL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reitan, C. H., 1957: The role of PW vapor in Arizona’s summer rains. Meteorology and Climatology of Arid Regions Tech. Rep. 2, Institute of Atmospheric Physics, The University of Arizona, Tucson, AZ, 18 pp.

  • Rogers, J. W., A. E. Cohen, and L. B. Carlaw, 2017: Convection during the North American monsoon across central and southern Arizona: Applications to operational meteorology. Wea. Forecasting, 32, 377390, doi:10.1175/WAF-D-15-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, R. S., and A. R. Dean, 2008: A comprehensive 5-year severe storm environment climatology for the continental United States. Preprints, 24th Conf. on Severe Local Storms, Savannah, GA, Amer. Meteor. Soc., 16A.4. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_141748.htm.]

  • Sellers, W. W., and R. H. Hill, 1974: Arizona Climate: 1931–1972. University of Arizona Press, 616 pp.

  • Shoemaker, C., and J. T. Davis, 2008: Hazardous weather climatology for Arizona. NOAA Tech. Memo. NWS-WR 282, 47 pp. [Available online at http://www.wrh.noaa.gov/wrh/techMemos/TM-282.pdf.]

  • Smith, B. T., T. E. Castellanos, A. C. Winters, C. M. Mead, A. R. Dean, and R. L. Thompson, 2013: Measured severe convective wind climatology and associated convective modes of thunderstorms in the contiguous United States. Wea. Forecasting, 28, 229236, doi:10.1175/WAF-D-12-00096.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tang, M., and E. R. Reiter, 1984: Plateau monsoons of the Northern Hemisphere: A comparison between North America and Tibet. Mon. Wea. Rev., 112, 617637, doi:10.1175/1520-0493(1984)112<0617:PMOTNH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, doi:10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Toth, J. J., and R. H. Johnson, 1985: Summer surface flow characteristics over northeast Colorado. Mon. Wea. Rev., 113, 14581469, doi:10.1175/1520-0493(1985)113<1458:SSFCON>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vasiloff, S. V., and K. W. Howard, 2009: Investigation of a severe downburst storm near Phoenix, Arizona, as seen by a mobile Doppler radar and the KIWA WSR-88D. Wea. Forecasting, 24, 856867, doi:10.1175/2008WAF2222117.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 353 121 2
PDF Downloads 271 91 6