Diurnal Variations in Severe Weather Forecast Parameters of Rapid Update Cycle-2 Tornado Proximity Environments

Larissa J. Reames School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Larissa J. Reames in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Nocturnal tornadoes are disproportionately dangerous compared with their daytime counterparts; thus, it is imperative to improve the forecasting of these tornadoes. This study uses a large (194 cases) and geographically expansive dataset of Rapid Update Cycle tornado proximity (within 80 km of initial tornado touchdown) soundings from 2003 to 2011 to investigate tornado forecast parameter differences between F1–F2 (weak) and F3+ (strong) nocturnal and daytime tornadoes. The findings suggest that, when considered alone, 0–1- and 0–3-km wind shears show the highest skill in distinguishing environments associated with weak and strong tornadoes, with 0–1-km shear being most effective at night and 0–3-km shear showing the most skill during the day. The results also indicate that combining most unstable CAPE with 0–3-km shear and 0–1-km shear with 3–9-km shear resulted in the most skillful daytime and nighttime forecasts, respectively.

Publisher’s Note: This article was revised on 11 April 2017 to correct an error in the second bullet of the Summary section.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Larissa J. Reames, lreames@ou.edu

Abstract

Nocturnal tornadoes are disproportionately dangerous compared with their daytime counterparts; thus, it is imperative to improve the forecasting of these tornadoes. This study uses a large (194 cases) and geographically expansive dataset of Rapid Update Cycle tornado proximity (within 80 km of initial tornado touchdown) soundings from 2003 to 2011 to investigate tornado forecast parameter differences between F1–F2 (weak) and F3+ (strong) nocturnal and daytime tornadoes. The findings suggest that, when considered alone, 0–1- and 0–3-km wind shears show the highest skill in distinguishing environments associated with weak and strong tornadoes, with 0–1-km shear being most effective at night and 0–3-km shear showing the most skill during the day. The results also indicate that combining most unstable CAPE with 0–3-km shear and 0–1-km shear with 3–9-km shear resulted in the most skillful daytime and nighttime forecasts, respectively.

Publisher’s Note: This article was revised on 11 April 2017 to correct an error in the second bullet of the Summary section.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Larissa J. Reames, lreames@ou.edu
Save
  • Ashley, W. S., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 12141228, doi:10.1175/2007WAF2007004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. J. Krmenec, and R. Schwantes, 2008: Vulnerability due to nocturnal tornadoes. Wea. Forecasting, 23, 795807, doi:10.1175/2008WAF2222132.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beebe, R. G., 1958: Tornado proximity soundings. Bull. Amer. Meteor. Soc., 39, 195201.

  • Benjamin, S. G., and Coauthors, 2004a: A 13-km RUC and beyond: Recent developments and future plans. 11th Conf. on Aviation, Range, and Aerospace/22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., J1.6. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_82011.htm.]

  • Benjamin, S. G., S. S. Weygandt, D. Devenyi, J. M. Brown, G. A. Manikin, T. L. Smith, and T. G. Smirnova, 2004b: Improved moisture and PBL initialization in the RUC using METAR data. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 17.3. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_82023.htm.]

  • Benjamin, S. G., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, doi:10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level let. Mon. Wea. Rev., 96, 833850, doi:10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bunkers, M. J., B. A. Klimowski, J. W. Zeitler, R. L. Thompson, and M. L. Weisman, 2000: Predicting supercell motion using a new hodograph technique. Wea. Forecasting, 15, 6179, doi:10.1175/1520-0434(2000)015<0061:PSMUAN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coffer, B. E., and M. D. Parker, 2015: Impacts of increasing low-level shear on supercells during the early evening transition. Mon. Wea. Rev., 143, 19451969, doi:10.1175/MWR-D-14-00328.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colquhoun, J. R., and P. A. Riley, 1996: Relationships between tornado intensity and various wind and thermodynamic variables. Wea. Forecasting, 11, 360371, doi:10.1175/1520-0434(1996)011<0360:RBTIAV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coniglio, M. C., J. Y. Hwang, and D. J. Stensrud, 2010: Environmental factors in the upscale growth and longevity of MCSs derived from Rapid Update Cycle analyses. Mon. Wea. Rev., 138, 35143539, doi:10.1175/2010MWR3233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J. P., R. E. Jewell, and H. E. Brooks, 2002: Comparison between observed convective cloud-base heights and lifting condensation level for two different lifted parcels. Wea. Forecasting, 17, 885890, doi:10.1175/1520-0434(2002)017<0885:CBOCCB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Craven, J. P., H. E. Brooks, and J. A. Hart, 2004: Baseline climatology of sounding derived parameters associated with deep, moist convection. Natl. Wea. Dig., 28, 1324.

    • Search Google Scholar
    • Export Citation
  • Davies, J. M., 2004: Estimations of CIN and LFC associated with tornadic and nontornadic supercells. Wea. Forecasting, 19, 714726, doi:10.1175/1520-0434(2004)019<0714:EOCALA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davies, J. M., and A. Fischer, 2009: Environmental characteristics associated with nighttime tornadoes. Electron. J. Oper. Meteor., 10 (3). [Available online at http://nwafiles.nwas.org/ej/pdf/2009-EJ3.pdf.]

    • Search Google Scholar
    • Export Citation
  • Davies-Jones, R., D. W. Burgess, and M. Foster, 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 588–592.

  • Doswell, C. A., III, and D. W. Burgess, 1988: On some issues of United States tornado climatology. Mon. Wea. Rev., 116, 495501, doi:10.1175/1520-0493(1988)116<0495:OSIOUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625629, doi:10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, and D. M. Schultz, 2006: On the use of indices and parameters in forecasting severe storms. Electron. J. Severe Storms Meteor., 1 (3). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewarticle/11/12.]

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, R. Davies-Jones, and D. L. Keller, 1990: On summary measures of skill in rare event forecasting based on contingency tables. Wea. Forecasting, 5, 576585, doi:10.1175/1520-0434(1990)005<0576:OSMOSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, H. E. Brooks, and N. Dotzek, 2009: On the implementation of the enhanced Fujita scale in the USA. Atmos. Res., 93, 554563, doi:10.1016/j.atmosres.2008.11.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Edwards, R., and R. L. Thompson, 2000: RUC-2 supercell proximity soundings, Part II: An independent assessment of supercell forecast parameters. Preprints, 20th Conf. on Severe Local Storms, Orlando, FL, Amer. Meteor. Soc., 435–438.

  • Edwards, R., J. G. LaDue, J. T. Ferree, K. Scharfenberg, C. Maier, and W. L. Coulbourne, 2013: Tornado intensity estimation: Past, present, and future. Bull. Amer. Meteor. Soc., 94, 641653, doi:10.1175/BAMS-D-11-00006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. S., and C. A. Doswell III, 2001: Examination of derecho environments using proximity soundings. Wea. Forecasting, 16, 329342, doi:10.1175/1520-0434(2001)016<0329:EODEUP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fawbush, E. J., and R. C. Miller, 1952: A mean sounding representative of the tornadic airmass environment. Bull. Amer. Meteor. Soc., 33, 303307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fawbush, E. J., and R. C. Miller, 1954: The types of air masses in which North American tornadoes form. Bull. Amer. Meteor. Soc., 35, 154165.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fawbush, E. J., R. C. Miller, and L. G. Starrett, 1951: An empirical method of forecasting tornado development. Bull. Amer. Meteor. Soc., 32, 19.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1971: Proposed characterization of tornadoes and hurricanes by area and intensity. SMRP Research Paper 91, Dept. of Geophysical Sciences, University of Chicago, 42 pp.

  • Glickman, T., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp. [Available online at http://glossary.ametsoc.org/.]

  • Grams, J. S., R. L. Thompson, D. V. Snively, J. A. Prentice, G. M. Hodges, and L. J. Reames, 2012: A climatology and comparison of parameters for significant tornado events in the United States. Wea. Forecasting, 27, 106123, doi:10.1175/WAF-D-11-00008.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grazulis, T. P., 1993: Significant Tornadoes, 1680-1991. Environmental Films, 1326 pp.

  • Hart, J., and W. Korotky, 1991: The SHARP workstation—v1.50. A skew T/hodograph analysis and research program for the IBM and compatible PC. NOAA/NWS Forecast Office Tech. Rep., Charleston, WV, 62 pp.

  • Heidke, P., 1926: Berechnung des Erfolges und der Gu te der Windsta rkevorhersagen im Sturmwarnungdienst (Calculation of the success and goodness of strong wind forecasts in the storm warning service). Geogr. Ann., 8, 301349.

    • Search Google Scholar
    • Export Citation
  • Kis, A. K., and J. M. Straka, 2010: Nocturnal tornado climatology. Wea. Forecasting, 25, 545561, doi:10.1175/2009WAF2222294.1.

  • Krzywinski, M., and N. Altman, 2014: Points of significance: Visualizing samples with box plots. Nat. Methods, 11, 119120, doi:10.1038/nmeth.2813.

  • Leslie, L. M., and R. K. Smith, 1978: The effect of vertical stability on tornadogenesis. J. Atmos. Sci., 35, 12811288, doi:10.1175/1520-0469(1978)035<1281:TEOVSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1976: An evaluation of tornado proximity wind and stability data. Mon. Wea. Rev., 104, 133142, doi:10.1175/1520-0493(1976)104<0133:AEOTPW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Markowski, P. M., C. Hannon, J. Frame, E. Lancaster, A. Pietrycha, R. Edwards, and R. L. Thompson, 2003: Characteristics of vertical wind profiles near supercells obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12671272, doi:10.1175/1520-0434(2003)018<1262:COVWPN>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mead, C. M., and R. L. Thompson, 2011: Environmental characteristics associated with nocturnal significant-tornado events in the central and southern Great Plains. Electron. J. Severe Storms Meteor., 6 (6). [Available online at http://www.ejssm.org/ojs/index.php/ejssm/article/viewArticle/84.]

    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., and A. A. Jensen, 2013: Classifying proximity soundings with self-organizing maps toward improving supercell and tornado forecasting. Wea. Forecasting, 28, 783801, doi:10.1175/WAF-D-12-00125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nowotarski, C. J., P. M. Markowski, and Y. P. Richardson, 2011: The characteristics of numerically simulated supercell storms situated over statically stable boundary layers. Mon. Wea. Rev., 139, 31393162, doi:10.1175/MWR-D-10-05087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petterssen, S., 1956: Weather and Weather Systems. Vol. 2, Weather Analysis and Forecasting, McGraw-Hill, 135 pp.

  • Pitman, E. J. G., 1938: Significance tests which may be applied to samples from any populations: III. The analysis of variance test. Biometrika, 29, 322335, doi:10.2307/2332008.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K., K. L. Elmore, and S. J. Weiss, 2010: Assessing the impacts of proximity sounding criteria on the climatology of significant tornado environments. Wea. Forecasting, 25, 921930, doi:10.1175/2010WAF2222368.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., 2003: Refined supercell and tornado forecast parameters. Wea. Forecasting, 18, 530535, doi:10.1175/1520-0434(2003)18<530:RSATFP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, E. N., and D. O. Blanchard, 1998: A baseline climatology of sounding-derived supercell and tornado forecast parameters. Wea. Forecasting, 13, 11481164, doi:10.1175/1520-0434(1998)013<1148:ABCOSD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, B. E., and C. A. Doswell III, 1991: North American rawinsonde observations: Problems, concerns, and a call to action. Bull. Amer. Meteor. Soc., 72, 18851896, doi:10.1175/1520-0477(1991)072<1885:NAROPC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schwartz, B. E., and K. J. Brundage, 2004: Accuracy of Rapid Update Cycle low-level jet forecasts. 22nd Conf. on Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., 2.3. [Available online at https://ams.confex.com/ams/pdfpapers/81998.pdf.]

  • Scott, D. W., 1992: Multivariate Density Estimation. Wiley-Interscience, 317 pp.

    • Crossref
    • Export Citation
  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, doi:10.1175/WAF-D-11-00115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stackpole, J. D., 1967: Numerical analysis of atmospheric soundings. J. Appl. Meteor., 6, 464467, doi:10.1175/1520-0450(1967)006<0464:NAOAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. 1st ed. Kluwer Academic, 670 pp.

    • Crossref
    • Export Citation
  • Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. M. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18, 12431261, doi:10.1175/1520-0434(2003)018<1243:CPSWSE>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., C. M. Mead, and R. Edwards, 2007: Effective storm-relative helicity and bulk shear in supercell thunderstorm environments. Wea. Forecasting, 22, 102115, doi:10.1175/WAF969.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, J. S. Grams, A. R. Dean, and C. Broyles, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part II: Supercell and QLCS tornado environments. Wea. Forecasting, 27, 11361154, doi:10.1175/WAF-D-11-00116.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, R. L., B. T. Smith, A. R. Dean, and P. T. Marsh, 2013: Spatial distributions of tornadic near-storm environments by convective mode. Electron. J. Severe Storms Meteor., 8 (5). [Available online at http://ejssm.org/ojs/index.php/ejssm/article/viewArticle/125.]

    • Search Google Scholar
    • Export Citation
  • Tukey, J. W., 1977: Exploratory Data Analysis. Addison-Wesley, 704 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 585 157 4
PDF Downloads 501 134 14