The Usefulness and Economic Value of Total Lightning Forecasts Made with a Dynamic Lightning Scheme Coupled with Lightning Data Assimilation

Barry H. Lynn Department of Earth Sciences, Hebrew University of Jerusalem, Givat Ram, Jerusalem, and Weather It Is, Ltd., Efrat, Israel

Search for other papers by Barry H. Lynn in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Total lightning probability forecasts for 26 mostly springtime days and 27 summertime days were analyzed for their usefulness and economic value. The mostly springtime forecast days had a relatively high number of severe weather reports compared with the summertime forecast days. The lightning forecasts were made with a dynamic lightning forecast scheme (DLS), and each forecast dataset used lightning assimilation to hasten convective initiation and, in most cases, to improve short-term forecasts. A spatial smoothing parameter σ of 48 km yielded more skillful, reliable, and economically valuable hourly forecasts than other values of σ. Mostly springtime forecasts were more skillful and had more hours of useful skill than summertime forecasts, but the latter still demonstrated useful skill during the first two forecast hours. The DLS forecasts were compared to those obtained with the “McCaul” diagnostic scheme, which diagnoses lightning flash data. The DLS had significantly higher fractions skill scores than the McCaul scheme for or at least one event/flash (10 min)−1. Bias values of the forecast lightning fields with both schemes were overall small. Yet, DLS forecasts started in the early summer evening with RAP data did have positive bias, which was attributed to initial conditions within the RAP. Correlating fractions skill scores for lightning and precipitation indicated that more accurate forecasts of lightning were associated with more accurate precipitation forecasts for convection with a high, but not lower, number of severe weather reports.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Barry Lynn, barry.h.lynn@gmail.com

Abstract

Total lightning probability forecasts for 26 mostly springtime days and 27 summertime days were analyzed for their usefulness and economic value. The mostly springtime forecast days had a relatively high number of severe weather reports compared with the summertime forecast days. The lightning forecasts were made with a dynamic lightning forecast scheme (DLS), and each forecast dataset used lightning assimilation to hasten convective initiation and, in most cases, to improve short-term forecasts. A spatial smoothing parameter σ of 48 km yielded more skillful, reliable, and economically valuable hourly forecasts than other values of σ. Mostly springtime forecasts were more skillful and had more hours of useful skill than summertime forecasts, but the latter still demonstrated useful skill during the first two forecast hours. The DLS forecasts were compared to those obtained with the “McCaul” diagnostic scheme, which diagnoses lightning flash data. The DLS had significantly higher fractions skill scores than the McCaul scheme for or at least one event/flash (10 min)−1. Bias values of the forecast lightning fields with both schemes were overall small. Yet, DLS forecasts started in the early summer evening with RAP data did have positive bias, which was attributed to initial conditions within the RAP. Correlating fractions skill scores for lightning and precipitation indicated that more accurate forecasts of lightning were associated with more accurate precipitation forecasts for convection with a high, but not lower, number of severe weather reports.

© 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author e-mail: Barry Lynn, barry.h.lynn@gmail.com
Save
  • American Meteorological Society, 1924a: Lightning explodes dynamite. Mon. Wea. Rev., 52, 313.

  • American Meteorological Society, 1924b: Loss of forty-seven head of cattle by a single lightning bolt. Mon. Wea. Rev., 52, 452.

  • Ashley, W. S., and C. W. Gilson, 2009: A reassessment of U.S. lightning mortality. Bull. Amer. Meteor. Soc., 90, 15011518, doi:10.1175/2009BAMS2765.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S., and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The Rapid Refresh. Mon. Wea. Rev., 144, 16691694, doi:10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Branick, M. L., and C. A. Doswell III, 1992: An observation of the relationship between supercell structure and lightning ground-strike polarity. Wea. Forecasting, 7, 143149, doi:10.1175/1520-0434(1992)007<0143:AOOTRB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., M. Kay, and J. A. Hart, 1998: Objective limits on forecasting skill for rare events. Preprints, 19th Conf. on Severe Local Storms, Minneapolis, MN, Amer. Meteor. Soc., 552–555.

  • Chen, F., and J. Dudhia, 2001a: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001b: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604, doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chronis, T., L. D. Carey, C. J. Schultz, E. V. Schultz, K. M. Calhoun, and S. J. Goodman, 2015: Exploring lightning jump characteristics. Wea. Forecasting, 30, 2337, doi:10.1175/WAF-D-14-00064.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., and M. L. Weisman, 2010: Neighborhood-based verification of precipitation forecasts from convection-allowing NCAR WRF Model simulations and the operational NAM. Wea. Forecasting, 25, 14951509, doi:10.1175/2010WAF2222404.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Curran, E. B., R. L. Holle, and R. E. López, 2000: Lightning casualties and damages in the United States from 1959 to 1994. J. Climate, 13, 34483464, doi:10.1175/1520-0442(2000)013<3448:LCADIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dahl, J. M. L., H. Höller, and U. Schumann, 2011: Modeling the flash rate of thunderstorms. Part I: Framework. Mon. Wea. Rev., 139, 30933111, doi:10.1175/MWR-D-10-05031.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., 2009: Neighborhood verification: A strategy for rewarding close forecasts. Wea. Forecasting, 24, 14981510, doi:10.1175/2009WAF2222251.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Efron, B., and R. J. Tibshirani, 1993: An Introduction to the Bootstrap. Chapman and Hall, 456 pp.

    • Crossref
    • Export Citation
  • Fierro, A. O., E. R. Mansell, C. L. Ziegler, and D. R. MacGorman, 2012: Application of a lightning data assimilation technique in the WRF-ARW Model at cloud-resolving scales for the tornado outbreak of 24 May 2011. Mon. Wea. Rev., 140, 26092627, doi:10.1175/MWR-D-11-00299.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, D. R. MacGorman, and C. L. Ziegler, 2013: The implementation of an explicit charging and discharge lightning scheme within the WRF-ARW Model: Benchmark simulations of a continental squall line, a tropical cyclone, and a winter storm. Mon. Wea. Rev., 141, 23902415, doi:10.1175/MWR-D-12-00278.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., J. Gao, C. Ziegler, E. R. Mansell, D. R. MacGorman, and S. Dembek, 2014: Evaluation of a cloud-scale lightning data assimilation technique and a 3DVAR method for the analysis and short-term forecast of the 29 June 2012 derecho event. Mon. Wea. Rev., 142, 183202, doi:10.1175/MWR-D-13-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., A. J. Clark, E. R. Mansell, D. R. MacGorman, S. R. Dembek, and C. L. Ziegler, 2015: Impact of storm-scale lightning data assimilation on WRF-ARW precipitation forecasts during the 2013 warm season over the contiguous United States. Mon. Wea. Rev., 143, 757777, doi:10.1175/MWR-D-14-00183.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gatlin, P. N., and J. Goodman, 2010: A total lightning trending algorithm to identify severe thunderstorms. J. Atmos. Oceanic Technol., 27, 322, doi:10.1175/2009JTECHA1286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and D. R. MacGorman, 1986: Cloud-to-ground lightning activity in mesoscale convective complexes. Mon. Wea. Rev., 114, 23202328, doi:10.1175/1520-0493(1986)114<2320:CTGLAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gremillion, M. S., and R. E. Orville, 1999: Thunderstorm characteristics of cloud-to-ground lightning at the Kennedy Space Center, Florida: A study of lightning initiation signatures as indicated by the WSR-88D. Wea. Forecasting, 14, 640649, doi:10.1175/1520-0434(1999)014<0640:TCOCTG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodanish, S., R. L. Holle, and D. T. Lindsey, 2004: A small updraft producing a fatal lightning flash. Wea. Forecasting, 19, 627632, doi:10.1175/1520-0434(2004)019<0627:ASUPAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holle, R. L., R. E. López, L. J. Arnold, and J. Endres, 1996: Insured lightning-caused property damage in three western states. J. Appl. Meteor., 35, 13441351, doi:10.1175/1520-0450(1996)035<1344:ILCPDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holle, R. L., R. E. López, and B. C. Navarro, 2005: Deaths, injuries, and damages from lightning in the United States in the 1890s in comparison with the 1990s. J. Appl. Meteor., 44, 15631573, doi:10.1175/JAM2287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hondl, K. D., and M. D. Eilts, 1994: Doppler radar signatures of developing thunderstorms and their potential to indicate the onset of cloud-to-ground lightning. Mon. Wea. Rev., 122, 18181836, doi:10.1175/1520-0493(1994)122<1818:DRSODT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Janjić, Z. L., 2002: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model. NCEP Office Note 437, 61 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on437.pdf.]

  • Kane, R. J., 1991: Correlating lightning to severe local storms in the northeastern United States. Wea. Forecasting, 6, 312, doi:10.1175/1520-0434(1991)006<0003:CLTSLS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kithil, R., 2011: Lightning hazard reduction at wind farms. National Lightning Safety Institute. [Available online at http://www.lightningsafety.com/nlsi_lhm/wind1.html.]

  • Kohn, M., E. Galanti, C. Price, K. Lagouvardos, and V. Kotroni, 2011: Nowcasting thunderstorms in the Mediterranean region using lightning data. Atmos. Res., 100, 489502, doi:10.1016/j.atmosres.2010.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koshak, W. J., K. L. Cummins, D. E. Buechler, B. Vant-Hull, R. J. Blakeslee, E. R. Williams, and H. S. Peterson, 2015: Variability of CONUS lightning in 2003–12 and associated impacts. J. Appl. Meteor. Climatol., 54, 1541, doi:10.1175/JAMC-D-14-0072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazo, J., M. Lawson, P. Larsen, and D. Waldman, 2011: U.S. economic sensitivity to weather variability. Bull. Amer. Meteor. Soc., 92, 709720, doi:10.1175/2011BAMS2928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López, R. E., and R. L. Holle, 1996: Fluctuations of lightning casualties in the United States: 1959–1990. J. Climate, 9, 608615, doi:10.1175/1520-0442(1996)009<0608:FOLCIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • López, R. E., R. L. Holle, and T. A. Heitkamp, 1995: Lightning casualties and property damage in Colorado from 1950 to 1991 based on Storm Data. Wea. Forecasting, 10, 114126, doi:10.1175/1520-0434(1995)010<0114:LCAPDI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., Y. Yair, C. Price, G. Kelman, and A. J. Clark, 2012: Predicting cloud-to-ground and intracloud lightning in weather forecast models. Wea. Forecasting, 27, 14701488, doi:10.1175/WAF-D-11-00144.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lynn, B. H., G. Kelman, and G. Ellrod, 2015: An evaluation of the efficacy of using observed lightning to improve convective lightning forecasts. Wea. Forecasting, 30, 405423, doi:10.1175/WAF-D-13-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and K. E. Nielsen, 1991: Cloud-to-ground lightning in a tornadic storm on 8 May 1986. Mon. Wea. Rev., 119, 15571574, doi:10.1175/1520-0493(1991)119<1557:CTGLIA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and W. D. Rust, 1998: The Electrical Nature of Storms. Oxford University Press, 422 pp.

  • Mäkelä, A., E. Saltikoff, J. Julkunen, I. Juga, E. Gregow, and S. Niemelä, 2013: Cold-season thunderstorms in Finland and their effect on aviation safety. Bull. Amer. Meteor. Soc., 94, 847858, doi:10.1175/BAMS-D-12-00039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two-moment bulk microphysics. J. Atmos. Sci., 67, 171194, doi:10.1175/2009JAS2965.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mazur, V., B. D. Fisher, and J. C. Gerlach, 1986: Lightning strikes to a NASA airplane penetrating thunderstorms at low altitudes. J. Aircr., 23, 499505, doi:10.2514/3.45335.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., S. J. Goodman, K. M. LaCasse, and D. J. Cecil, 2009: Forecasting lightning threat using cloud-resolving model simulations. Wea. Forecasting, 24, 709729, doi:10.1175/2008WAF2222152.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCaul, E. W., Jr., J. L. Case, S. R. Dembek, F. Kong, S. J. Goodman, and S. Weiss, 2011: Optimizing the lightning forecast algorithm within the Weather Research and Forecasting Model. Seventh GOES Users Conf., Birmingham, AL, NOAA–NWA. [Available online at http://www.goes-r.gov/downloads/GUC-7/day1/session04/04-mccaul.pdf.]

  • Mecikalski, J. R., J. K. Williams, C. P. Jewett, D. Ahijevych, A. LeRoy, and J. R. Walker, 2015: Probabilistic 0–1-h convective initiation nowcasts that combine geostationary satellite observations and numerical weather prediction model data. J. Appl. Meteor. Climatol., 54, 10391059, doi:10.1175/JAMC-D-14-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mosier, R. M., C. Schumacher, R. E. Orville, and L. D. Carey, 2011: Radar nowcasting of cloud-to-ground lightning over Houston, Texas. Wea. Forecasting, 26, 199212, doi:10.1175/2010WAF2222431.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perez, A. H., L. J. Wicker, and R. E. Orville, 1997: Characteristics of cloud-to-ground lightning associated with violent tornadoes. Wea. Forecasting, 12, 428437, doi:10.1175/1520-0434(1997)012<0428:COCTGL>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, C., 2008: Lightning sensors for observing, tracking and nowcasting severe weather. Sensors, 8, 157170, doi:10.3390/s8010157.

  • Rash, C. E., 2010: When lightning strikes. AeroSafety World, 5, 1823.

  • Reap, R. M., and D. R. MacGorman, 1989: Cloud-to-ground lightning: Climatological characteristics and relationships to model fields, radar observations, and severe local storms. Mon. Wea. Rev., 117, 518535, doi:10.1175/1520-0493(1989)117<0518:CTGLCC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897, doi:10.1175/2007MWR2123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., and S. Rutledge, 2003: Nowcasting storm initiation and growth using GOES-8 and WSR-88D data. Wea. Forecasting, 18, 562584, doi:10.1175/1520-0434(2003)018<0562:NSIAGU>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rorig, M. L., and S. A. Ferguson, 2002: The 2000 fire season: Lightning-caused fires. J. Appl. Meteor., 41, 786791, doi:10.1175/1520-0450(2002)041<0786:TFSLCF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossi, P. J., V. Chandrasekar, V. Hasu, and D. Moisseev, 2015: Kalman filtering–based probabilistic nowcasting of object-oriented tracked convective storms. J. Atmos. Oceanic Technol., 32, 461477, doi:10.1175/JTECH-D-14-00184.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rudlosky, S. D., and H. E. Fuelberg, 2013: Documenting storm severity in the mid-Atlantic region using lightning and radar information. Mon. Wea. Rev., 141, 31863202, doi:10.1175/MWR-D-12-00287.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saunders, C. P. R., 2008: Charge separation mechanisms in clouds. Space Sci. Rev., 137, 335354, doi:10.1007/s11214-008-9345-0.

  • Saxen, T. R., and Coauthors, 2008: The operational mesogamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part IV: The White Sands Missile Range Auto-Nowcast system. J. Appl. Meteor. Climatol., 47, 11231139, doi:10.1175/2007JAMC1656.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 25432563, doi:10.1175/2009JAMC2237.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seroka, G. N., R. E. Orville, and C. Schumacher, 2012: Radar nowcasting of total lightning over the Kennedy Space Center. Wea. Forecasting, 27, 189204, doi:10.1175/WAF-D-11-00035.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shafer, M. A., D. R. MacGorman, and F. H. Carr, 2000: Cloud-to-ground lightning throughout the lifetime of a severe storm system in Oklahoma. Mon. Wea. Rev., 128, 17981816, doi:10.1175/1520-0493(2000)128<1798:CTGLTT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Short, D. A., J. E. Sardonia, W. C. Lambert, and M. M. Wheeler, 2004: Nowcasting thunderstorm anvil clouds over Kennedy Space Center and Cape Canaveral Air Force Station. Wea. Forecasting, 19, 706713, doi:10.1175/1520-0434(2004)019<0706:NTACOK>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sieglaff, J. M., L. M. Cronce, W. F. Feltz, K. M. Bedka, M. J. Pavolonis, and A. K. Heidinger, 2011: Nowcasting convective storm initiation using satellite-based box-averaged cloud-top cooling and cloud-type trends. J. Appl. Meteor. Climatol., 50, 110126, doi:10.1175/2010JAMC2496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D6DZ069T.

    • Crossref
    • Export Citation
  • Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125, 18701884, doi:10.1175/1520-0493(1997)125<1870:PODSMC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, and D. Kim, 2000: Parameterization of cold-season processes in the MAPS land-surface scheme. J. Geophys. Res., 105, 40774086, doi:10.1029/1999JD901047.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, T. M., and Coauthors, 2014: Examination of a real-time 3DVAR analysis system in the Hazardous Weather Testbed. Wea. Forecasting, 29, 6377, doi:10.1175/WAF-D-13-00044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sobash, R. A., J. S. Kain, D. R. Bright, A. R. Dean, M. C. Coniglio, and S. J. Weiss, 2011: Probabilistic forecast guidance for severe thunderstorms based on the identification of extreme phenomena in convection-allowing model forecasts. Wea. Forecasting, 26, 714728, doi:10.1175/WAF-D-10-05046.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steiger, S. M., R. E. Orville, and L. D. Carey, 2007: Total lightning signatures of thunderstorm intensity over north Texas. Part I: Supercells. Mon. Wea. Rev., 135, 32813302, doi:10.1175/MWR3472.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stern, A. D., R. H. Brady, P. D. Moore, and G. M. Carter, 1994: Identification of aviation weather hazards based on the integration of radar and lightning data. Bull. Amer. Meteor. Soc., 75, 22692280, doi:10.1175/1520-0477(1994)075<2269:IOAWHB>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stolzenburg, M., T. C. Marshall, W. D. Rust, and B. F. Smull, 1994: Horizontal distribution of electrical and meteorological conditions across the stratiform region of a mesoscale convective system. Mon. Wea. Rev., 122, 17771797, doi:10.1175/1520-0493(1994)122<1777:HDOEAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, J., S. B. Trier, Q. Xiao, M. L. Weisman, H. Wang, Z. Ying, M. Xu, and Y. Zhang, 2012: Sensitivity of 0–12-h warm-season precipitation forecasts over the central United States to model initialization. Wea. Forecasting, 27, 832855, doi:10.1175/WAF-D-11-00075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sweers, G., B. Birch, and J. Gokcen, 2012: Lightning strikes: Protection, inspection, and repair. Aero, Vol. 4, No. 4, Boeing Company, Seattle, WA, 18–28. [Available online at http://www.boeing.com/commercial/aeromagazine/articles/2012_q4/pdfs/AERO_2012q4_article4.pdf.]

  • Takahashi, T., 1978: Electrical properties of oceanic tropical clouds at Ponape, Micronesia. Mon. Wea. Rev., 106, 15981612, doi:10.1175/1520-0493(1978)106<1598:EPOOTC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, J. C., and G. W. Brier, 1955: The economic utility of weather forecasts. Mon. Wea. Rev., 83, 249253, doi:10.1175/1520-0493(1955)083<0249:TEUOWF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thompson, M. L., and W. Zucchini, 1990: Assessing the value of probability forecasts. Mon. Wea. Rev., 118, 26962706, doi:10.1175/1520-0493(1990)118<2696:ATVOPF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Broeke, M. S., D. M. Schultz, R. H. Johns, J. S. Evans, and J. E. Hales, 2005: Cloud-to-ground lightning production in strongly forced, low-instability convective lines associated with damaging wind. Wea. Forecasting, 20, 517530, doi:10.1175/WAF876.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, J. R., W. M. MacKenzie Jr., J. R. Mecikalski, and C. P. Jewett, 2012: An enhanced geostationary satellite–based convective initiation algorithm for 0–2-h nowcasting with object tracking. J. Appl. Meteor. Climatol., 51, 19311949, doi:10.1175/JAMC-D-11-0246.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallmann, J., R. Milne, C. Smallcomb, and M. Mehle, 2010: Using the 21 June 2008 California lightning outbreak to improve dry lightning forecast procedures. Wea. Forecasting, 25, 14471462, doi:10.1175/2010WAF2222393.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, T. A., J. H. Helsdon Jr., M. J. Bunkers, M. F. Saba, and R. E. Orville, 2013: UPLIGHTS: Upward lightning triggering study. Bull. Amer. Meteor. Soc., 94, 631635, doi:10.1175/BAMS-D-11-00252.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: On “field significance” and the false discovery rate. J. Appl. Meteor. Climatol., 45, 11811189, doi:10.1175/JAM2404.1.

  • Williams, E. R., 1989: The tripole structure of thunderstorms. J. Geophys. Res., 94, 13 15113 167, doi:10.1029/JD094iD11p13151.

  • Wilson, J. W., E. E. Ebert, T. R. Saxen, R. D. Roberts, C. K. Mueller, M. Sleigh, C. E. Pierce, and A. Seed, 2004: Sydney 2000 Forecast Demonstration Project: Convective storm nowcasting. Wea. Forecasting, 19, 131150, doi:10.1175/1520-0434(2004)019<0131:SFDPCS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yair, Y., B. H. Lynn, C. Price, V. Kotroni, K. Lagouvardos, E. Morin, A. Mugnai, and M. C. Llasat, 2010: Predicting the potential for lightning activity in Mediterranean storms based on the Weather Research and Forecasting (WRF) model dynamic and microphysical fields. J. Geophys. Res., 115, D04205, doi:10.1029/2008JD010868.

    • Search Google Scholar
    • Export Citation
  • Yang, Y. H., and P. King, 2010: Investigating the potential of using radar echo reflectivity to nowcast cloud-to-ground lightning initiation over southern Ontario. Wea. Forecasting, 25, 12351248, doi:10.1175/2010WAF2222387.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 19441961, doi:10.1175/2009JAS2824.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 915 442 111
PDF Downloads 382 83 6